next up previous
: 3 $B;YG[J}Dx<0!&NO3X2aDx(B : DCPAM3 $BBh(B2$BIt(B $BN%;62=(B : 1 $B$3$NJ8=q$K$D$$$F(B


2 $B:BI87O!&JQ498x<0(B

0 00

0.2 $B:BI87O(B

$B$3$3$G$O?eJ?3J;RE@(B, $B1tD>%l%Y%k$N$H$jJ}$r5-$9(B. $B$5$i$K(B, $BNO3X2aDx$N;~4V@QJ,$K$*$$$F;HMQ$9$k?eJ?%9%Z%/%H%k$rDj5A$7(B, $B3J;RE@CM$H%9%Z%/%H%k$N78?t$H$NJQ49B'$r5-$9(B.

0.2.1 $B?eJ?3J;R(B

$B?eJ?J}8~$N3J;RE@$N0LCV$O(B, Gauss $B0^EY!J3J;RE@?t(B $J$ $B8D(B1$B!K(B, $BEy4V3V$N7PEY!JF1(B $I$ $B8D!K$G$"$k(B.

0.2.2 $B1tD>%l%Y%k(B

Arakawa and Suarez(1983) $B$N%9%-!<%`$rMQ$$$k(B. $B$H$jJ}$O0J2<$N$H$*$j$G$"$k(B3.

$B2<$NAX$+$i>e$X$HAX$NHV9f$r$D$1$k(B. $B@0?t%l%Y%k$HH>@0?t%l%Y%k$rDj5A$9$k(B4. $BH>@0?t%l%Y%k$G$N(B $\sigma$ $B$NCM(B $\sigma_{k-1/2} (k=1,2,\cdots,K)$ $B$rDj5A$9$k(B. $B$?$@$7(B, $B%l%Y%k(B $\frac{1}{2}$ $B$O2), $B%l%Y%k(B $K+\frac{1}{2}$ $B$O>eC<(B($\sigma=0$)$B$H$9$k(B. $B@0?t%l%Y%k$N(B $\sigma$ $B$NCM(B $\sigma_k (k=1,2,\ldots K)$ $B$O

$\displaystyle \sigma_k = \left\{ \frac{1}{1+\kappa}
\left( \frac{ \sigma^{\kapp...
...a +1}_{k+1/2} }
{ \sigma_{k-1/2} - \sigma_{k+1/2} }
\right)
\right\}^{1/\kappa}$     (3)

$B$?$@$7(B, ${\displaystyle \kappa=\frac{R}{C_p} }$ $B$G$"$k(B. $B$3$3$G(B, $R$ $B$O4%Ag6u5$$N5$BNDj?t(B, $C_p$ $B$O4%Ag6u5$$NEy05HfG.$G$"$k(B5 $B$^$?(B, $B%l%Y%k2C=E(B $B&$&R$O0J2<$N$h$&$KDj5A$5$l$k(B.

$\displaystyle \Delta \sigma_k$ $\textstyle \equiv$ $\displaystyle \sigma_{k-1/2} - \sigma_{k+1/2}\ ( 1 \le k \le K )$ (4)
$\displaystyle \Delta \sigma_{1/2}$ $\textstyle \equiv$ $\displaystyle \sigma_{1/2} - \sigma_{1}
= 1 -\sigma_{1}$ (5)
$\displaystyle \Delta \sigma_{K+1/2}$ $\textstyle \equiv$ $\displaystyle \sigma_{K} - \sigma_{K+1/2}
= \sigma_{K}$ (6)


\begin{picture}(300,150)(50,10)
\put(50,20){\line(1,0){220}}
\put(50,40){\line...
...){\shortstack{$\sigma=1$}}
\put(280,136){\shortstack{$\sigma=0$}}
\end{picture}
5% latex2html id marker 7180
\setcounter{footnote}{5}\fnsymbol{footnote} 55

0.3 $B?eJ?%9%Z%/%H%k(B

$B$3$3$G$O(B, $BNO3X2aDx$N;~4V@QJ,$G$N7W;;$K$*$$$FMQ$$$k%9%Z%/%H%k$rF3F~$7(B, $B3J;RE@$G$NCM$H%9%Z%/%H%k$N78?t$H$N$d$j

0.3.1 $B?eJ?%9%Z%/%H%k$N4pDl$NF3F~(B

$B3J;RE@>e$NE@$GDj5A$5$l$?J*M}NL$O(B, $B3J;RE@>e$G$N$_CM$r;}$D!J0J2<$3$N$3$H$r(B, $B!VN%;62=$7$?!W$H8F$V!K(B $B5eLLD4OBH!?t$NOB$N7A$GI=8=$5$l$k(B. $B$^$?(B, $B3F3J;RE@$K$*$1$kJ*M}NL$N?eJ?HyJ,$rI>2A$9$k$?$a$K(B, $(\lambda, \phi)$ $BLL$GDj5A$5$l$?!J0J2<(B, $B!VO"B37O$N!W$H8F$V!K(B $B5eLLD4OBH!?t7O$GFbA^$7$FF@$i$l$k4X?t$rMQ$$$k(B. $B$3$3$G$O$=$N5eLLD4OBH!?t$rF3F~$9$k(B. $B$J$*(B, $B4JC1$N$?$a$K(B, $BO"B37O$N5eLLD4OBH!?t$N$_$rM[$K5-$9(B. $BN%;67O$N5eLLD4OBH!?t$O(B $BO"B37O$N5eLLD4OBH!?t$K3J;RE@$N:BI8$rBeF~$7$?$b$N$+$i9=@.$5$l$k(B.

$(\lambda, \phi)$ $BLL$K$*$$$F(B, $B5eLLD4OBH!?t(B $Y_n^m(\lambda,\phi)$ $B$O

    $\displaystyle Y_n^m(\lambda,\phi)
\equiv P_n^m(\sin \phi) \exp(im \lambda)$ (7)

$B$?$@$7(B, $m,n$ $B$O(B $\ 0 \le \vert m\vert \le n$ $B$rK~$?$9@0?t$G$"$j(B, $P_n^m(\sin \phi)$ $B$O(B 2$B$G5,3J2=$5$l$?(BLegendre$BH!?t!&GfH!?t(B
    $\displaystyle P_n^m(\mu)\equiv
\sqrt{\frac{(2n+1)(n-\vert m\vert)!}{(n+\vert m\...
...mu^2)^{\frac{\vert m\vert}{2}} }{2^n n!}
\DD[n+\vert m\vert]{}{\mu} (\mu^2-1)^n$ (8)
    $\displaystyle \int_{-1}^1 P_n^m(\mu) P_{n'}^m(\mu) d \mu = 2 \delta_{nn'}$ (9)

$B$G$"$k(B. $B$J$*(B, $P_n^0$ $B$r(B $P_n$ $B$H$b=q$/(B.

0.3.2 $BGH?t@ZCG(B

$BGH?t@ZCG$O;03Q7A@ZCG!J(BT$B!K$^$?$OJ?9T;MJU7A@ZCG!J(BR$B!K$H$9$k(B. M , N $B$O;03Q7A@ZCG(B, $BJ?9T;MJU7A@ZCG$N$H$-$K$D$$$F(B $B$=$l$>$l0J2<$N$H$*$j$G$"$k(B. $B$?$@$7(B, $B@ZCGGH?t$r(B $N_{tr}$ $B$H$9$k(B.



$B$h$/MQ$$$i$l$kCM$NNc$H$7$F$O(B, T42 $B$N>l9g(B $I=128, J=64$ , R21 $B$N>l9g(B $I=64, J=64$ $B$,$"$k(B.

$B$J$*(B, $B5eLLD4OBH!?t$K$D$$$F$O%j%U%!%l%s%9!V5eLLD4OBH!?t!W$r(B, $BGH?t@ZCG$K$D$$$F$O%j%U%!%l%s%9!VGH?t@ZCG!W$r(B $B;2>H$;$h(B.

0.3.3 $BN%;62=$7$?%9%Z%/%H%k$N4pDl$ND>8r@-(B

$BN%;62=$7$?(BLegendre$BH!?t$H;03Q4X?t$O(B $B8r>r7o$rK~$?$9(B6.

    $\displaystyle \sum_{j=1}^{J} P_n^m (\mu_j) P_{n'}^m (\mu_j) w_j
= \delta_{nn'}$ (10)
    $\displaystyle \sum_{i=1}^{I} \exp(im \lambda_i) \exp(-im' \lambda_i)
= I \delta_{mm'}$ (11)

$B$3$3$G(B $w_j$ $B$O(B Gauss $B2Y=E$G(B, ${\displaystyle w_j \equiv \frac{(2J-1)(1-\sin^2 \phi_j)}
{(J P_{J-1}(\sin \phi_j))^2 } }$ $B$G$"$k(B.

0.3.4 $B3J;RE@CM$H%9%Z%/%H%k$N78?t$H$NJQ49K!(B

$BJ*M}NL(B $A$ $B$N(B $B3J;RE@(B $(\lambda_i,\phi_j)$ $B!J$?$@$7(B $i=1,2,\cdots,I, \ j=1,2,\cdots,J$$B!K$G$NCM(B $A_{ij}=A(\lambda_i,\phi_j)$ $B$H(B $B%9%Z%/%H%k6u4V$G$N(B $Y_n^m$ $B!J$?$@$7(B $m=-M,\cdots,M, \ n=\vert m\vert,\cdots,N(m)$ $B!K(B $B$N78?t(B $\tilde{A}_n^m$ $B$H$O$&(B7.


    $\displaystyle A_{ij} \equiv \sum_{m=-M}^{M} \sum_{n=\vert m\vert}^{N}
\tilde{A}_n^m
Y_n^m (\lambda_i,\phi_j)$ (12)
    $\displaystyle \tilde{A}_n^m
= \frac{1}{I}
\sum_{i=1}^{I} \sum_{j=1}^{J}
A_{ij} Y_n^{m*} (\lambda_i, \phi_j) w_j$ (13)



$A$ $B$, ${\displaystyle
\left(\tilde{A}^m_n \exp(im\lambda) \right)^*
= \tilde{A}^{-m}_n \exp(-im\lambda) }$ $B$J$N$G(B, $m$ $B$K$D$$$F$OIi$G$J$$@0?t$NHO0O$G(B $BOB$r$H$k$3$H$,$G$-$k(B8. $B$?$@$7(B, $A_n^m$ $B$NDj5A$r=$@5$7$F$$$k$3$H$KCm0U$;$h(B.


    $\displaystyle A_{ij} = \sum_{m=0}^{M} \sum_{n=m}^{N}
\Re \tilde{A}_n^m Y_n^m(\lambda_i, \phi_j)$ (14)
    $\displaystyle \tilde{A}_n^m =
\left\{
\begin{array}{ll}
{\displaystyle \frac{1}...
...}(\lambda_i,\phi_j) w_j
& \ \ \ 1 \le m \le M, m \le n \le N
\end{array}\right.$ (15)

0.3.5 $BFbA^8x<0(B

$(\lambda, \phi)$ $B6u4V$GDj5A$5$l$kJ*M}NL(B $A(\lambda,\phi)$ $B$r(B $B3J;RE@CM(B $A_{ij}$ $B$r$b$H$KFbA^$9$k>l9g$K$O(B, $BJQ498x<0$rMQ$$$F(B $A_{ij}$ $B$+$i(B $\tilde{A}_n^m$ $B$r5a$a$?>e$G(B,

    $\displaystyle A(\lambda,\phi)
\equiv \sum_{m=-M}^{M} \sum_{n=\vert m\vert}^{N}
\tilde{A}_n^m Y_n^m (\lambda, \phi)$ (16)

$B$H$7$FF@$k(B.

0.3.6 $B6u4VHyJ,$NI>2A(B

$B3F3J;RE@$K$*$1$k6u4VHyJ,CM$NI>2A$O(B, $BFbA^8x<0$rMQ$$$FF@$?O"B34X?t$N6u4VHyJ,$N3J;RE@CM$GI>2A$9$k(B.



... $B8D(B1
$B0J2<(B, $J$ $B$O6v?t$H$9$k(B. $B8=:_$NElBgHGBg5$(B GCM $B$G$O(B, $B!J(BGauss $B0^EY$H$7$F$H$k>l9g$K$O!K(B $J$ $B$O6v?t$G$J$1$l$P$J$i$J$$(B.
... $B$H$9$k(B2
$J$ $B $B$O(B
$\displaystyle \left[
\DD{}{\mu}
\left\{ (1-\mu^2) \DD{}{\mu} \right\}
+ J(J+1) \right] P_J(\mu) = 0$     (1)

$B$rK~$?$9(B $J$ $B $B$NNmE@$OA4$F(B $-1 < \mu < 1$ $B$K$"$k(B. $B$=$NM}M3$K$D$$$F(B $B>\$7$/$O!V(BLegendre$BH!?t(B$P_n$$B$N@-H(B.
$B$J$*(B, Gauss $B0^EY$O6a;wE*$K$O(B ${\displaystyle
\sin^{-1} \left( \cos \frac{j-1/2}{J}\pi \right)
}$ $B$GM?$($i$l$k(B.
... $B$H$jJ}$O0J2<$N$H$*$j$G$"$k(B3
$B$J$<$3$&$9$k$H$h$$$N$+$K$D$$$F$OL$D4::(B. $BJ]B8NL$H4XO"$9$k$i$7$$(B.
... $B@0?t%l%Y%k$HH>@0?t%l%Y%k$rDj5A$9$k(B4
$BJ*M}NL$K$h$j(B, $B@0?t%l%Y%k$GDj5A$5$l$k$b$N$H(B, $BH>@0?t%l%Y%k$GDj5A$5$l$k$b$N$,$"$k(B.
... $B$O4%Ag6u5$$NEy05HfG.$G$"$k(B5
$B$$$:$l$bDj?t$H$7$F$$$k(B.
... $B8r>r7o$rK~$?$9(B6
$B>\$7$/$O%j%U%!%l%s%9!V5eLLD4OBH!?t$NN%;6E*D>8r4X78!W(B $B$r;2>H$;$h(B.
... $B$H$O$&(B7
$B@5JQ49(B, $B5UJQ49;~$N78?t$O(B consistent $B$KM?$($F$5$($$$l$PLdBj$,$J$$(B. $B8=:_$N(B GCM $B$G$O(B $B0[$J$kF0:n$r$9$k(B2$B$C$F$$$k(B. $B!J$b$&0l$D$O(B $BCfB<0l(B $BHG$G$"$k(B.$B!K(B $B;EMM$K$D$$$F(B $B>\$7$/$OBh#3It$N(B FFT $B$K4X$9$k9`L\(B $B!J!V(BFFT99X$B!W!K$r8+$i$l$?$$(B.
... $BOB$r$H$k$3$H$,$G$-$k(B8
$B$5$i$K(B, $B $P_n^m(\sin \phi)$ $B$,(B, $n-m$ $B$,(B $B6v?t!J(Beven$B!K$N;~(B $\phi=0$ $B$K$D$$$FBP>N(B, $n-m$ $B$,(B $B4q?t!J(Bodd$B!K$N;~(B $\phi=0$ $B$K$D$$$FH?BP>N(B $B$G$"$k$3$H$r9MN8$7$F1i;;2s?t$r8:$i$9$3$H$,$G$-$k(B. $B$9$J$o$A(B, $A_{ij}$ $B$N7W;;$G$O(B $BKLH>5e$N$_$K$D$$$F(B $BFnKLBP>[email protected],(B$A_{ij}^{even}$$B$H(B $BH?BP>[email protected],(B$A_{ij}^{odd}$$B$K$D$$$F(B $B$=$l$>$l7W;;$7(B, $BFnH>5e$K$D$$$F$O(B $A{i,J-j}=A_{ij}^{even}-A_{ij}^{odd}$ $B$H$9$l$P$h$$(B. $B$^$?(B, $A_n^m$ $B$N7W;;$K$*$$$F$O(B, $B$=$NBP>N@-(B, $BH?BP>N@-$K4p$E$$$F(B $A_{i,j}+A_{i,J-j}$ $B$^$?$O(B $A_{i,j}-A_{i,J-j}$ $B$N0lJ}$r(B $j$ $B$K$D$$$F(B 1$B$+$i(B $J/2$ $B$^$G2C$($l$P$h$$(B.

next up previous
: 3 $B;YG[J}Dx<0!&NO3X2aDx(B : DCPAM3 $BBh(B2$BIt(B $BN%;62=(B : 1 $B$3$NJ8=q$K$D$$$F(B
Morikawa Yasuhiro $BJ?@.(B17$BG/(B11$B7n(B9$BF|(B