next up previous
: E. $BC10L$N49;;Ey$N7W;;(B : 2 $B : C. $B:9J,<0$NF3=P$H8m:9(B


D. $B2=3XJ*@-CM$N7W;;K!(B

D.1 $BAjJ?9U>r7o(B

D.1.1 $BK0OB>x5$05(B

$BK0OB>x5$05$O(B, Antoine $B$N<0$h$j5a$a$k(B.

$\displaystyle \ln p^{*}= (A - B / (C + T - T_{0})) * \log(10.0) + \ln(133.322)$     (D.1)

$B$3$3$G(B, $p^{*}$ $B$OK0OB>x5$05(B, $T$ $B$O29EY(B, $T_{0} = 273.15$ $B$G$"$k(B. $A, B, C$ $B$O(B Antoine $B78?t$G$"$k(B. $B$=$l$i$NCM$O2=3XJXMw2~D{(B 4 $BHG$+$iF@$k(B. $B2=3XJXMw2~D{(B 4 $BHG$G$O(B, $B05NO$NC10L$,(B mmHg, $B29EY$NC10L$,(B $^{\circ}$C $B$G$"(B $B$k$N$G(B, $BC10L$N49;;9`$,IU2C$5$l$F$$$k(B.

$BI=(B D.1: $B?e(B, $B%"%s%b%K%"$N(B Antoine $B78?t(B
  A B C
H$_{2}$O(l) 7.9186968 1636.909 224.92
H$_{2}$O(s) 8.184254 1791.3 238.1
NH$_{3}$(s) 9.96382 1617.907 272.55

$BG$0U$N29EY$,M?$($i$l$?>l9g(B, $B6E=LNL$OK0OB>x5$05$HJ,05$N:9$H$7$F8+@Q$b$k$3(B $B$H$,$G$-$k(B.

D.1.2 $B05J?9UDj?t(B

$BN22=%"%s%b%K%&%`$N@[email protected]?1~(B

$\displaystyle {\rm NH_{3}} + {\rm H_{2}S} \rightarrow {\rm NH_{4}SH}$     (D.2)

$B$N05J?9UDj?t$O(B,
$\displaystyle K_{p}
= \ln(p_{\rm NH_{3}} \cdot p_{\rm H_{2}S})
= 61.781 - \frac{10834}{T} - \ln{10^{2}}$     (D.3)

$B$G$"$k(B. $B05J?9UDj?t$rMQ$$$k$3$H$G(B, $BG$0U$N29EY$KBP$9$k(B $B%"%s%b%K%"$HN22=?eAG$N%b%kHf$N@Q$r5a$a$k$3$H$,$G$-$k(B.

D.2 $B@8@.$N%(%s%?%k%T!

D.2.1 $B@xG.(B

$BK0OB>x5$05$H@xG.$O%/%i%&%8%&%9!&%/%i%Z%$%m%s$N<0(B,

$\displaystyle \DD{p_{v}}{T} = \frac{p_{v} L_{v}}{R T^{2}}$     (D.4)

$B$G4X78$E$1$i$l$k(B. $B$3$N<0$r(B $L_{v}$ $B$N<0$H$7$F$^$H$a$J$*$9$3$H$G(B, $B@xG.$O0J2<$N$h$&$KM?$($i$l$k(B.
$\displaystyle L_{v} = \DD{\ln p_{v}}{T} {R_{v} T^{2}}$     (D.5)

$BC"$7(B $R_{v}$ mail protected],$KBP$9$k5$BNDj?t$G$"$k(B. Antoine $B$N<0$rBeF~$9$k$H(B,
$\displaystyle L_{v} = \left\{
\frac{B \ln(10.0)}{ (C + T - T_{0})^{2} }
\right\} R_{v} T^{2}$     (D.6)

$B$G$"$k(B.

D.2.2 $BH?1~G.(B

$BN22=%"%s%b%K%&%`$N@[email protected]?1~(B

$\displaystyle {\rm NH_{3}} + {\rm H_{2}S} \rightarrow {\rm NH_{4}SH}$     (D.7)

$B$K$*$$$F(B, NH$_4$SH $B$N%(%s%H%m%T!<$H(B NH$_3$ $B$H(B H$_2$S $B$N(B $B%(%s%H%m%T!<$N:9$,(B, $BH?1~$KH<$&%(%s%H%m%T! NH$_4$SH $B$N%b%k%(%s%H%m%T!<$O(B,
$\displaystyle s_{\rm NH_4SH}$ $\textstyle =$ $\displaystyle - \DP{\mu_{\rm NH_4SH}}{T}$  
  $\textstyle =$ $\displaystyle - \DP{}{T}
\left(
\mu_{\rm NH_3}^{\circ} + \mu_{\rm H_2S}^{\circ} + RT K_{p}
- RT \ln {p_{0}}^{2}
\right)$  
  $\textstyle =$ $\displaystyle s_{\rm NH_3}^{\circ} + s_{\rm H_2S}^{\circ}
- RT \DP{K_{p}}{T} - R K_{p}
+ R\ln {p_{0}}^{2}$ (D.8)

$B$G$"$k(B. $B$3$3$G(B $\mu_{\rm NH_3}^{\circ}$, $\mu_{\rm H_2S}^{\circ}$ $B$O(B NH${}_{3}$ $B$H(B N${}_{2}$S $B$NI8=`2=3X%]%F%s%7%c%k(B, $s_{\rm NH_3}^{\circ}$, $s_{\rm H_2S}^{\circ}$ $B$O$=$l$K(B $BBP1~$9$k%(%s%H%m%T!<(B, $K_{p}$ $B$O(B (D.7) $B$NH?1~<0$N(B $B05J?9UDj?t$G$"$k(B. NH$_3$ $B$H(B H$_2$S $B$N%b%k%(%s%H%m%T!<$NOB$O(B,
$\displaystyle s_{\rm NH_3} + s_{\rm H_2S}$ $\textstyle =$ $\displaystyle s_{\rm NH_3}^{\circ} + s_{\rm H_2S}^{\circ}
- R\ln (p_{\rm NH_3}\cdot p_{\rm H_2S}) + R\ln p_{0}^{2}$  
  $\textstyle =$ $\displaystyle s_{\rm NH_3}^{\circ} + s_{\rm H_2S}^{\circ}
- R\ln K_{p} + R\ln p_{0}^{2}$ (D.9)

(D.8) $B$H(B (D.9) $B$N:9(B
$\displaystyle \Delta s
= RT \DP{K_{p}}{T}$     (D.10)

$B$,H?1~$N%(%s%H%m%T!
$\displaystyle L_{\rm NH_4SH} = T \Delta s = RT^{2} \DP{K_{p}}{T}$     (D.11)

$B$G$"$k(B. NH$_4$SH $B@[email protected]?1~$N05J?9UDj?t$rBeF~$9$k$H(B,
$\displaystyle L_{\rm NH_4SH} = \frac{10834}{T^2} {R T^{2}} = 10834 R$     (D.12)

$B$G$"$k(B.


next up previous
: E. $BC10L$N49;;Ey$N7W;;(B : 2 $B : C. $B:9J,<0$NF3=P$H8m:9(B
SUGIYAMA Ko-ichiro $BJ?@.(B21$BG/(B3$B7n(B6$BF|(B