next up previous
: C. $B:9J,<0$NF3=P$H8m:9(B : 2 $B : A. $B05NOJ}Dx<0(B (3.9) $B$N:8JU$N6u4VHyJ,$N=q$-2<$7(B

B. $B2;GH8:?j9`$K$D$$$F(B

appendix-b

$BK\%b%G%k$GMQ$$$F$$$k;~4VJ}8~$NN%;62=J}K!(B($B;~4VJ,3dK!(B)$B$O(B, Klemp and Wilhelmson (1978) $B$K$h$C$F:G=i$KDs0F$5$l$?J}K!$G$"$k(B. $B$3$NJ}K!$rMQ$$$k(B $B$H(B, $B2;B.$*$h$S0\N.$KBP$9$k(B CFL $B>r7o$r$=$l$>$lK~$?$7$F$$$k>l9g$G$b7W;;(B $BIT0BDj$r5/$3$9>l9g$,$"$k(B. $B$3$N1F6A$OC;$$;~4V4V3V$G@QJ,$9$k%9%F%C%W?t(B $2\Delta t/\Delta \tau$ $B$rA}2C$5$;$F$$$/$K$D$lBg$-$/$J$k(B (Skamarock and Klemp, 1992, $B?^(B 1 $B$r;2>H(B). Skamarock and Klemp (1992) $B$O$3$N7W;;(B $BIT0BDj$r2sHr$9$k$?$a(B, $B2;GH$rA*BrE*$K8:?j$5$;$k%U%#%k%?!<$H$7$F1?F0J}Dx(B $B<0$K2;GH8:?j9`$rF3F~$9$k$3$H$rDs0F$7$?(B.

$B2;GH8:?j9`$OB.EY>l$NH/;6$KBP$9$k3H;6$H$7$F:nMQ$9$k(B. $B$3$N$3$H$O2;GH8:?j9`$r4^$`@~7A2=$5$l$?4pACJ}Dx<0(B

$\displaystyle \DP{u}{t}$ $\textstyle =$ $\displaystyle - \overline{c}_{p}\overline{\theta}_{v}
\DP{\pi}{x} + \alpha\DP{D}{x} ,$ (B.1)
$\displaystyle \DP{w}{t}$ $\textstyle =$ $\displaystyle - \overline{c}_{p}\overline{\theta}_{v}
\DP{\pi}{z} + \alpha\DP{D}{z}
+ g\frac{\theta}{\overline{\theta}_{v}},$ (B.2)
$\displaystyle \DP{\pi}{t}$ $\textstyle =$ $\displaystyle - \frac{\overline{c}^{2}}{\overline{c}_{p}
\overline{\rho}\overli...
...rline{\theta}_{v}u}{x} +
\DP{\overline{\rho}\overline{\theta}_{v}w}{z}
\right],$ (B.3)
$\displaystyle \DP{\theta}{t}$ $\textstyle =$ $\displaystyle -w\DP{\overline{\theta}_{v}}{z},$ (B.4)
$\displaystyle D$ $\textstyle =$ $\displaystyle \DP{u}{x}+\DP{w}{z}$  

$B$+$iH/;6J}Dx<0(B
$\displaystyle \DP{D}{t}$ $\textstyle =$ $\displaystyle - \overline{c}_{p}\overline{\theta}_{v}\Dlapla \pi
+ g\DP{}{z}\left(\frac{\theta}{\overline{\theta}_{v}}\right)
+ \alpha \Dlapla D,$ (B.5)
$\displaystyle \Dlapla$ $\textstyle =$ $\displaystyle \DP[2]{}{x} + \DP[2]{}{z}$  

$B$r5a$a$k$3$H$GM}2r$9$k$3$H$,$G$-$k(B.

$B2;GH8:?j9`$OB.EY>l$NH/;6$KBP$9$k3H;6$J$N$G(B, mail protected],$b3H;6$5$;$k2DG=(B $B@-$,9M$($i$l$k(B. $B$7$+$7(B Skamarock and Klemp (1992) $B$O@~7A2=$5$l$?4pACJ}(B $BDx<0$NJ,;64X78$rMQ$$$F(B, $B2;GH8:?j9`[email protected],$X$N1F6A$O>.$5$$$3$H$r<((B $B$7$F$$$k(B. $B0J2<$G$O(B Skamarock and Klemp (1992) $B$K$*$1$k5DO@$N35MW$r<($9(B. $B4JC1$N$?$a05NOJ}Dx<0$K8=$l$k4pK\>l$NNL$ODj?t$H$7(B, $BA4$F$NJQ?t$r(B $u=\hat{u}e^{i(kx+lz -\omega t)}$ $B$N$h$&$J2r$r;}$D$H2>Dj$7$FJ,;64X78$r(B $B5a$a$k$H(B,

\begin{displaymath}
\omega ^{4} + i\alpha (k^{2}+l^{2})\omega ^{3} -
[\overli...
...}
- i\alpha k^{2}N^{2}\omega + \overline{c}^{2}k^{2}N^{2}=0,
\end{displaymath} (B.6)

$B$H$J$k(B. $B$3$3$G(B $N^{2} = \frac{g}{\overline{\theta}_{v}}\DP{
\overline{\theta}_{v}}{z}$ $B$G$"$k(B. $B=c?h$JFbIt=ENOGH$NJ,;64X78<0(B

\begin{displaymath}
\omega ^{2} = \frac{N^{2}k^{2}}{k^{2}+l^{2}},
\end{displaymath}

$B$r(B $\alpha$ $B$r4^$`9`$KBeF~$9$k$H(B $\alpha$ $B$r4^$`9`$O8_$$$KBG$A>C$7$"(B $B$&$3$H$+$i(B, $B2;GH8:?j9`[email protected],$X$N1F6A$O>.$5$$$G$"$m$&$HM=A[$5$l$k(B. $B $\epsilon \equiv \alpha \sqrt{k^{2}+l^{2}}/\overline{c}$ $B$,>.(B $B$5$$$H2>Dj$7$F(B $\omega$ $B$r(B $\epsilon$ $B$N6R$GE83+$7$F2;GH8:?j9`$N1F6A$r(B $BI>2A$9$k$H(B, $B2;GH8:?j9`[email protected],$r8:?j$5$;$kJ}8~$K$O$?$i$-(B, $B$=$N8:?j(B $BN($OHs>o$K>.$5$$$3$H$,$o$+$k(B(Skamarock and Klemp, 1992, $B?^(B 5 $B;2>H(B).

$B2;GH8:?j9`$N78?t(B $\alpha$ $B$NCM$r7h$a$k$K$"$?$j(B, $B9MN8$7$J$1$l$P$J$i$J$$(B $B$3$H$,(B 2 $B$D$"$k(B. 1 $B$D$O2;GH8:?j9`$=$N$b$N$,7W;;IT0BDj$N860x$H$J$i$J$$(B $B$h$&$9$k$3$H$G$"$j(B, $B$b$&(B 1 $B$D$O2;GH8:?j9`[email protected],$X$N1F6A$,Bg$-$/(B $B$J$i$J$$$h$&$9$k$3$H$G$"$k(B. $BA0[*])$B$K<($7$?$h$&$K(B, $B2;GH8:?j9`$,H/;6J}Dx<0$N3H;69`$H$J$k$3$H$+$iMW@A$5(B $B$l$k(B. $B2;GH8:?j9`$N;~4V@QJ,$OA0?J:9J,$rMQ$$$F9T$o$l$k$N$G(B ((3.6), (3.7)$B$r;2>H(B), $B7W;;IT0BDj$r5/$3(B $B$5$J$$$?$a$K$O3H;69`$rA0?J:9J,$G;~4V@QJ,$9$k>l9g$N0BDj@->r7o(B

\begin{displaymath}
\frac{\alpha \Delta \tau}{\mbox{Min}(\Delta x^{2}, \Delta z^{2})} \leq \frac{1}{2}
\end{displaymath} (B.7)

$B$rK~$?$5$J$1$l$P$J$i$J$$(B. $B8eR2p$7$?(B Skamarock and Klemp (1992) $B$N5DO@$GMQ$$$?(B $\epsilon$ $B$,>.$5$$$H$$$&2>Dj$+$iMW@A$5$l$k(B B.1. $\epsilon$ $B$N:GBgCM$O(B

\begin{eqnarray*}
\mbox{Max}(\epsilon)
&=& \frac{2\alpha}{\mbox{Min}(\Delta x...
...overline{c}\Delta \tau}{\mbox{Min}(\Delta x, \Delta z)}
\right.
\end{eqnarray*}

$B$HM?$($i$l$k$N$G(B, $\mbox{Max}(\epsilon) \leq 1$ $B$H$9$k$?$a$K$O(B
\begin{displaymath}
\frac{\alpha \Delta \tau}{\mbox{Min}(\Delta x^{2}, \Delta z...
...\frac{\overline{c}\Delta \tau}{\mbox{Min}(\Delta x, \Delta z)}
\end{displaymath} (B.8)

$B$G$J$1$l$P$J$i$J$$(B.(B.8)$B1&JU$K8=$l$k2;B.$KBP(B $B$9$k%/!<%i%s?t$O(B 1 $B$h$j>.$5$$CM$H$9$k$N$G(B, ([*])$B$N>r7o$r9MN8$9$l$P(B(B.7)$B$O<+F0E*$KK~$?$5$l(B $B$k$3$H$K$J$k(B.



... $B$,>.$5$$$H$$$&2>Dj$+$iMW@A$5$l$k(BB.1
$B$3$N>r7o$K4X$9$k5DO@$O(B Skamarock and Klemp (1992) $B$G$O$J$5$l$F(B $B$$$J$$(B

next up previous
: C. $B:9J,<0$NF3=P$H8m:9(B : 2 $B : A. $B05NOJ}Dx<0(B (3.9) $B$N:8JU$N6u4VHyJ,$N=q$-2<$7(B
SUGIYAMA Ko-ichiro $BJ?@.(B21$BG/(B3$B7n(B6$BF|(B