next up previous
: C. $B1@HyJ*M}2aDx(B : $B<>=aBg5$$K$*$1$k(B 2 $B : A. $B=`05=LJ}Dx<07O$NF3=P(B


B. $BMpN.%Q%i%a%?%j%

B.1 $BMpN.%Q%i%a%?%j%

Klemp and Wilhelmson (1978) $B$*$h$S(B CReSS $B$GMQ$$$i$l$F$$$k(B 1.5 $B

$\displaystyle \DD{E}{t}$ $\textstyle =$ $\displaystyle B + S + D_{E}
- \left(\frac{C_{\varepsilon}}{l}\right)
E^{\frac{3}{2}}$ (B.1)

$B$HM?$($i$l$k(B. $l$ $B$O:.9g5wN%$G(B, $l = \left(\Delta x \Delta z \right)^{1/2}$ $B$H$9$k(B. $B$ $B$H(B $S$ $B$O$=$l$>$lIbNO$HN.$l$NJQ7AB.EY$K$h(B $B$kMpN.%(%M%k%.!<@[email protected]`(B, $D_{E}$ $B$OMpN.%(%M%k%.!<3H;69`(B, $BBh(B 4 $B9`$OMpN.(B $B%(%M%k%.!<$N>C;69`$G$"$j(B,
$\displaystyle B$ $\textstyle =$ $\displaystyle \frac{g_{j}}{\overline{\theta}}
\overline{u^{\prime}_{j} \theta^{\prime}} ,$ (B.2)
$\displaystyle S$ $\textstyle =$ $\displaystyle - \overline{(u_{i}^{\prime} u_{j}^{\prime})}
\DP{u_{i}}{x_{j}} ,$ (B.3)
$\displaystyle D_{E}$ $\textstyle =$ $\displaystyle \DP{}{x_{j}} \left(K_{m} \DP{E}{x_{j}} \right)$ (B.4)

$B$G$"$k(B. 1.5 $B
$\displaystyle \overline{(u_{i}^{\prime} u_{j}^{\prime})}$ $\textstyle =$ $\displaystyle - K_{m} \left(\DP{u_{i}}{x_{j}}
+ \DP{u_{j}}{x_{i}}\right)
+ \frac{2}{3} \delta_{ij} E,$ (B.5)
$\displaystyle \overline{u_{j}^{\prime} \theta }$ $\textstyle =$ $\displaystyle - K_{h}\DP{\theta}{x_{j}}.$ (B.6)

$B$3$3$G(B $K_{m}$ $B$O1?F0NL$KBP$9$k12G4@-78?t$G$"$j(B, $E$ $B$O%5%V%0%j%C%I%9(B $B%1!<%k$NMpN.1?F0%(%M%k%.!<(B, $K_{h}$ $B$O123H;678?t$G$"$k(B. $K_{m}$, $K_{h}$ $B$O(B $E$ $B$rMQ$$$F0J2<$N$h$&$KM?$($i$l$k(B.
$\displaystyle K_{m}$ $\textstyle =$ $\displaystyle C_{m} E^{\frac{1}{2}} l,$ (B.7)
$\displaystyle K_{h}$ $\textstyle =$ $\displaystyle 3 K_{m}.$ (B.8)

$B%Q%i%a!<%?(B $C_{\varepsilon}, C_{m}$ $B$O$H$b$K(B 0.2 $B$G$"$k(B. a

B.1.1 $BMpN.1?F0%(%M%k%.!

Klemp and Wilhelmson (1978) $B$G$O(B(B.1)$B$K$D$$$F(B, $B!V(BDeardroff (1975), Mellor and Yamada (1974), Schemm and Lipps (1976) $B$GMQ$$$i$l(B $B$F$$$k<0$HN`;w$N$b$N$G$"$k!W$H$@$15-=R$5$l(B, $B$=$NF3=P$N>\:Y$K$D$$$F$O2r(B $B@b$5$l$F$$$J$$(B. $B$=$l$f$(Bg5$Bg=[4D%b%G%k$G$h$/MQ$$$i$l$F$$$k(B Mellor and Yamada (1974, 1982) $B$N%Q%i%a%?%j%B.1), (B.5), ([*]) $B$NF3=P$r9T$&(B.

$B9M$($F$$$k%5%V%0%j%C%I%9%1!<%kFb$K$*$$$F(B, $BL)EY$O0lDj(B, $BF0G4@-78?t$d3H;6(B $B78?t$J$I$NJ*M}Dj?t$O0lDj$H$9$k(B. $B=PH/E@$H$J$kJ}Dx<0$O(B, Mellor and Yamada (1973) $B$N<0(B (7) $B$*$h$S(B (8)

$\displaystyle \DP{\overline{u^{\prime}_{i}u^{\prime}_{j}}}{t}$ $\textstyle +$ $\displaystyle \DP{}{x_{k}}\left[
u_{k}\overline{u^{\prime}_{i}u^{\prime}_{j}}
+...
...^{\prime}_{j}}
- \nu \DP{}{x_{k}}\overline{u^{\prime}_{i}u^{\prime}_{j}}\right]$  
  $\textstyle +$ $\displaystyle \DP{}{x_{j}}\overline{pu^{\prime}_{i}}
+ \DP{}{x_{i}}\overline{pu...
...me}u^{\prime}_{i}}
+ \varepsilon _{ikl}\overline{u_{l}^{\prime}u^{\prime}_{j}})$  
  $\textstyle =$ $\displaystyle -\overline{u^{\prime}_{k}u^{\prime}_{i}}\DP{u_{j}}{x_{k}}
-\overl...
...(g_{j}\overline{u^{\prime}_{i}\theta }
+ g_{i}\overline{u^{\prime}_{j}\theta })$  
  $\textstyle +$ $\displaystyle \overline{p\left(\DP{u^{\prime}_{i}}{x_{j}}
+ \DP{u^{\prime}_{j}}...
...right)}
- 2\nu \overline{\DP{u^{\prime}_{i}}{x_{k}}\DP{u^{\prime}_{j}}{x_{k}}},$ (B.9)


$\displaystyle \DP{\overline{u^{\prime}_{j}\theta^{\prime}}}{t}$ $\textstyle +$ $\displaystyle \DP{}{x_{k}}\left[
u_{k}\overline{\theta^{\prime} u^{\prime}_{j}}...
...a^{\prime} }
+ \varepsilon _{jkl}f_{k}\overline{u^{\prime}_{l}\theta^{\prime} }$  
  $\textstyle =$ $\displaystyle -\overline{u^{\prime}_{j}u^{\prime}_{k}}\DP{\theta }{x_{k}}
-\ove...
...lpha + \nu )
\overline{\DP{u^{\prime}_{j}}{x_{k}}\DP{\theta^{\prime} }{x_{k}}}.$ (B.10)

$B$*$h$S(B, (B.9)$B$K$*$$$F(B $i=j$ $B$H$7$?<0(B
$\displaystyle \DP{q^{2}}{t} + u_{k}\DP{q^{2}}{x_{k}}
+ \DP{}{x_{k}}\left(\overline{u^{\prime}_{k}u^{\prime}_{j}u^{\prime}_{j}}
- \nu \DP{q^{2}}{x_{k}}\right)$ $\textstyle =$ $\displaystyle - \overline{u^{\prime}_{j}u^{\prime}_{k}}\DP{u_{j}}{x_{k}}
- \DP{}{x_{k}}\overline{pu^{\prime}_{j}}$  
    $\displaystyle + g_{j}\beta\overline{u^{\prime}_{j}\theta^{\prime}}
- 2\nu \overline{\left(\DP{u^{\prime}_{j}}{x_{k}}\right)}$ (B.11)

$B$3$3$G(B

\begin{eqnarray*}
q &\equiv& \sqrt{\overline{(u^{\prime}_{i})^{2}}} \\
& = & \sqrt{2E}
\end{eqnarray*}

$B$G(B, $\nu, \alpha, \beta$ $B$O$=$l$>$lF0G4@-78?t(B, $B3H;678?t$*$h$SG.KD(B $BD%N((B, $g_{j}$ $B$O=ENO2CB.EY%Y%/%H%k$NBh(B $j$ mail protected],$G$"$k(B.

(B.9)$B$*$h$S(B(B.10)$B$K8=$l$k05NO$K4X$9$kAj4X9`(B $B$*$h$S(B 3 $BDj$r$*$/(B.

  1. $\overline{p\left(\DP{u^{\prime}_{i}}{x_{j}} + \DP{u^{\prime}_{i}}{x_{j}}\right)}$ ($B05NO$K$h$k1?F0%(%M%k%.!<$N:FJ,G[(B)


    \begin{displaymath}
= - \frac{q}{3l_{1}}(\overline{u^{\prime}_{i}u^{\prime}_{j}...
...+ Cq^{2}\left(\DP{u_{i}}{x_{j}}
+ \DP{u_{j}}{x_{i}}\right),
\end{displaymath}

    $B$H$*$/(B. $B$3$3$G(B $l_{1}$ $B$OMpN.$NFCD'E*$J%9%1!<%k(B, $C$ $B$OL5
  2. $\overline{p\DP{\theta^{\prime} }{x_{k}}}$ ($B05NO$K$h$kG.%(%M%k%.!<:FJ,G[(B)

    1. $B$NF3=P$HF1MM$N9M;!$K$h$C$F(B,

    \begin{displaymath}
= -\frac{q}{3l_{2}}\overline{u^{\prime}_{i}\theta^{\prime} }
\end{displaymath}

    $B$H$*$/(B. $B$3$3$G$NMp$l$N%9%1!<%k$O(B $l_{2}$ $B$H$9$k(B.

  3. $2\nu \overline{\DP{u^{\prime}_{i}}{x_{k}}\DP{u^{\prime}_{j}}{x_{k}}}$ ($BG4@-$K$h$k;60o(B)

    $BG4@-$K4XM?$9$k$h$&$J>.%9%1!<%k$N8=>]$OEyJ}E*$H$_$F(B $q$ $B$N$_(B $B$GI=8=$9$k(B.

    \begin{displaymath}
= \frac{2}{3}\frac{q^{3}}{\Lambda _{1}}\delta _{ij}.
\end{displaymath}

    $B$3$3$G(B $\Lambda _{1}$ $B$OG4@-$N5Z$VFCD'E*%9%1!<%k$G$"$k(B.

  4. $(\alpha + \nu )
\overline{\DP{u^{\prime}_{j}}{x_{k}}\DP{\theta^{\prime} }{x_{k}}}$


    \begin{displaymath}
= 0
\end{displaymath}

    $B$H$*$/(B.

  5. $\overline{u^{\prime}_{k}u^{\prime}_{i}u^{\prime}_{j}},
\overline{u^{\prime}_{...
...{\prime}_{j}\theta^{\prime} },
\overline{u^{\prime}_{k}(\theta^{\prime})^{2}}$

    $BB.EYJQF0$K$h$k(B $\overline{u^{\prime}_{k}u^{\prime}_{i}u^{\prime}_{j}},
\overline{u^{\prime}_{...
...{\prime}_{j}\theta^{\prime} },
\overline{u^{\prime}_{k}(\theta^{\prime})^{2}}$ $B$H9M$(

    \begin{eqnarray*}
\overline{u^{\prime}_{k}u^{\prime}_{i}u^{\prime}_{j}}
&=& -...
... -q\lambda _{3}
\DP{\overline{(\theta^{\prime})^{2}}}{x_{k}}.
\end{eqnarray*}

    $B$3$3$G(B $\lambda _{i}(i=1,2,3)$ $B$O$=$l$>$l$NFCD'E*%9%1!<%k$G$"$k(B.

  6. $\overline{pu^{\prime}_{i}}, \overline{p\theta^{\prime} }$ ($B05NOJQF0$K$h$k3H;6(B)


    \begin{displaymath}
\overline{pu^{\prime}_{i}} = \overline{p\theta^{\prime} } = 0
\end{displaymath}

    $B$H$9$k(B. $B$3$N6a;w$O(B Deardroff (1975), Schemm and Lipps (1976) $B$G$b9T$o$l$F$$$k(B.

  7. $f_{k}(\varepsilon _{jkl}\overline{u_{l}^{\prime}u^{\prime}_{i}}
+ \varepsilon ...
...me}_{j}}), \;
f_{k}\varepsilon _{jkl}\overline{u_{l}^{\prime}\theta^{\prime} }$ ($B%3%j%*%j9`(B)


    \begin{displaymath}
f_{k}\varepsilon _{jkl}\overline{u_{l}^{\prime}u^{\prime}_{...
...varepsilon _{ikl}\overline{u_{l}^{\prime}u^{\prime}_{j}} = 0,
\end{displaymath}


    \begin{displaymath}
f_{k}\varepsilon _{jkl}\overline{u_{l}^{\prime}\theta^{\prime}} = 0
\end{displaymath}

    $B$H$9$k(B. $B$3$N6a;w$O(B Deardroff (1975), Schemm and Lipps (1976) $B$G$b9T$o$l$F$$$k(B.

  8. $\alpha \overline{u^{\prime}_{j}\DP{\theta^{\prime} }{x_{k}}}, \;
\nu \overline{\theta^{\prime} \DP{u^{\prime}_{j}}{x_{k}}}$


    \begin{displaymath}
= 0
\end{displaymath} (B.12)

    $B$H$9$k(B.

$B0J>e$N6a;w$r(B(B.9), (B.10), (B.11) $B$KBP$7$F9T$&$H(B, $B0J2<$N<0$rF@$k(B.
$\displaystyle \DD{\overline{u^{\prime}_{i}u^{\prime}_{j}}}{t}$ $\textstyle -$ $\displaystyle \DP{}{x_{k}}\left[
q\lambda _{1}\left(
\DP{\overline{u^{\prime}_{...
...}}{x_{i}}\right)
-\nu\DP{}{x_{k}}\overline{u^{\prime}_{i}u^{\prime}_{j}}\right]$  
  $\textstyle =$ $\displaystyle - \overline{u^{\prime}_{k}u^{\prime}_{i}}\DP{u_{j}}{x_{k}}
- \ove...
...{\prime}_{i}\theta^{\prime} }
+ g_{i}\overline{u^{\prime}_{j}\theta^{\prime} })$  
    $\displaystyle - \frac{q}{3l_{1}}(\overline{u^{\prime}_{i}u^{\prime}_{j}}
- \fra...
...+ \DP{u_{j}}{x_{i}}\right)
- \frac{2}{3}\frac{q^{3}}{\Lambda _{1}}\delta _{ij},$ (B.13)
$\displaystyle \DD{\overline{u^{\prime}_{j}\theta^{\prime} }}{t}$ $\textstyle -$ $\displaystyle \DP{}{x_{k}}\left[q\lambda _{2}\left(
\DP{\overline{u^{\prime}_{k...
...}}{x_{j}}
+ \DP{\overline{u^{\prime}_{j}\theta^{\prime} }}{x_{k}}\right)\right]$  
  $\textstyle =$ $\displaystyle - \overline{u^{\prime}_{j}u^{\prime}_{k}}\DP{\theta }{x_{k}}
- \o...
...eta^{\prime})^{2}}
- \frac{q}{3l_{2}}\overline{u^{\prime}_{j}\theta^{\prime} },$ (B.14)
$\displaystyle \DD{q^{2}}{t}$ $\textstyle +$ $\displaystyle \DP{}{x_{k}}\left[
q\lambda _{1}\left(
2\DP{q^{2}}{x_{k}} +
\DP{\...
...ine{u^{\prime}_{j}u^{\prime}_{k}}}{x_{j}}\right)
- \nu \DP{q^{2}}{x_{k}}\right]$  
  $\textstyle =$ $\displaystyle - 2\overline{u^{\prime}_{j}u^{\prime}_{k}}\DP{u_{j}}{x_{k}}
+ 2g_{j}\beta\overline{u^{\prime}_{j}\theta^{\prime}}
- 2\frac{q^{3}}{\Lambda _{1}}$ (B.15)

$B$3$3$G(B

\begin{displaymath}
\DD{}{t} \equiv \DP{}{t} + u_{k}\DP{}{x_{k}}
\end{displaymath}

$B$G$"$k(B. $B$3$l$i$O(B Mellor and Yamada (1974) $B$N(B Level 4 $B%b%G%k$N<0$KBP1~(B $B$9$k<0$G$"$k(B.

$B<0(B(B.13), (B.14), (B.15)$B$KBP$7(B, $B$5$i$K0J2<$N6a;w$r2C$($k(B.

$B$3$l$i$N6a;w$r9T$&$H(B, $B<0(B(B.13), (B.14), (B.15)$B$O(B
$\displaystyle \overline{u^{\prime}_{i}u^{\prime}_{j}}$ $\textstyle =$ $\displaystyle \frac{\delta _{ij}}{3}q^{2}
- ql_{1}\left(\DP{u_{i}}{x_{j}} + \DP{u_{j}}{x_{i}}\right)$ (B.16)
$\displaystyle \overline{u^{\prime}_{j}\theta^{\prime}}$ $\textstyle =$ $\displaystyle - ql_{2}\DP{\theta }{x_{j}}$ (B.17)
$\displaystyle \DD{q^{2}}{t}$ $\textstyle =$ $\displaystyle - 2\overline{u^{\prime}_{j}u^{\prime}_{k}}\DP{u_{j}}{x_{k}}
+ 2g_...
...
+ \DP{}{x_{k}}\left[\nu \DP{q^{2}}{x_{k}}\right]
- 2\frac{q^{3}}{\Lambda _{1}}$ (B.18)

$B$H$J$k(B. (B.16)$B$O(B Mellor and Yamada (1974) $B$N(B Level 1 $B%b%G%k$N(B $\overline{u^{\prime}_{i}u^{\prime}_{j}}$ $B$N<0$G$"$k(B. (B.17)$B$O(B Mellor and Yamada (1974) $B$N(B Level 1 $B%b%G%k(B $B$N(B $\overline{u^{\prime}_{j}\theta^{\prime}}$ $B$N<0$G(B $\overline{(\theta^{\prime})^{2}}$ $B$N9`$rL5;k$7$?$b$N$KBP1~$9$k(B. (B.18) $B$O(B Mellor and Yamada (1974) $B$N(B Level 3 $B%b%G(B $B%k$N(B $q^{2}$ $B$N<0$K$*$$$F(B, 3 $B $ql_{1}=K_{m}, ql_{2}=K_{h}$ $B$H$7(B, $q$ $B$r(B $E$ $B$GI=$7F0G4@-78?t$rMpN.3H;678?t$GCV$-49$($k$H(B
$\displaystyle \overline{u^{\prime}_{i}u^{\prime}_{j}}$ $\textstyle =$ $\displaystyle \frac{2}{3}\delta _{ij}E
- K_{m}\left(\DP{u_{i}}{x_{j}} + \DP{u_{j}}{x_{i}}\right)$ (B.19)
$\displaystyle \overline{u^{\prime}_{j}\theta^{\prime}}$ $\textstyle =$ $\displaystyle - K_{h}\DP{\theta }{x_{k}}$ (B.20)
$\displaystyle \DD{E}{t}$ $\textstyle =$ $\displaystyle - \overline{u^{\prime}_{j}u^{\prime}_{k}}\DP{u_{j}}{x_{k}}
+ g_{j...
..._{k}}\left[K_{m} \DP{q^{2}}{x_{k}}\right]
- \frac{2^{3/2}}{\Lambda _{1}}E^{3/2}$ (B.21)

$B$H$J$k(B. $BM}A[5$BN$N>l9g(B $\beta = 1/\theta$ $B$G$"$k$3$H$KCm0U$9$k$H(B, $B<0(B (B.21)$B$O;60o9`$N78?t$r=|$-(B(B.1)$B$K0lCW(B $B$9$k(B.

$B0J>e$h$j(B, Klemp and Wilhelmson (1978) $B$NMpN.%Q%i%a%?%j%$NAj4XNL$O?GCGE*$K5a$a$k%b%G%k$H$7$F(B Mellor and Yamada (1974) $B$N(B Level 2.5 $B%b%G%k$,$"$k(B. $B$7$+$7(B Level 2.5 $B%b%G%k$O(B Level 3 $B%b%G%k$H(B Level 2 $B%b%G%k$H$NAH9g$;$G$"$k$3$H$KCm0U$,I,(B $BMW$G$"$k(B.

B.1.2 2 $Bl9g$NI=8=(B

2 $Bl9g$N(B(B.1)$B<0$N3F9`$r=q$-2<$9(B. $BIbNO$K$h$kMpN.%(%M%k(B $B%.!<@[email protected]`$O(B,

$\displaystyle B$ $\textstyle =$ $\displaystyle \frac{g_{j}}{\overline{\theta}}
\overline{u^{\prime}_{j} \theta^{\prime}}$  
  $\textstyle =$ $\displaystyle - \frac{g}{\overline{\theta}}
\overline{w^{\prime} \theta^{\prime}}$  
  $\textstyle =$ $\displaystyle - \frac{g}{\overline{\theta}}
\left( K_{h} \DP{\theta}{z} \right)$ (B.22)

$B$G$"$k(B. $B $B$O(B,
$\displaystyle S$ $\textstyle =$ $\displaystyle - \overline{(u_{i}^{\prime} u_{j}^{\prime})}
\DP{u_{i}}{x_{j}}$  
  $\textstyle =$ $\displaystyle - \left\{
- K_{m} \left(\DP{u_{i}}{x_{j}} + \DP{u_{j}}{x_{i}}\right)
+ \frac{2}{3} \delta_{ij} E
\right\}
\DP{u_{i}}{x_{j}}$  
  $\textstyle =$ $\displaystyle \left\{
K_{m} \left(\DP{u_{i}}{x_{j}} + \DP{u_{j}}{x_{i}}\right)
- \frac{2}{3} \delta_{ij} E
\right\}
\DP{u_{i}}{x_{j}}$  
  $\textstyle =$ $\displaystyle \left\{
K_{m} \left(\DP{u}{x_{j}} + \DP{u_{j}}{x}\right)
- \frac{2}{3} \delta_{1j} E
\right\}
\DP{u}{x_{j}}$  
    $\displaystyle +
\left\{
K_{m} \left(\DP{w}{x_{j}} + \DP{u_{j}}{z}\right)
- \frac{2}{3} \delta_{3j} E
\right\}
\DP{w}{x_{j}}$  
  $\textstyle =$ $\displaystyle \left\{
2 K_{m} \left(\DP{u}{x} \right)
- \frac{2}{3} E
\right\}
\DP{u}{x}
+
K_{m} \left( \DP{w}{x} + \DP{u}{z} \right)
\DP{u}{z}$  
    $\displaystyle +
K_{m} \left(\DP{w}{x} + \DP{u}{z}\right)
\DP{w}{x}
+
\left\{
2 K_{m} \left(\DP{w}{z} \right)
- \frac{2}{3} E
\right\}
\DP{w}{z}$  
  $\textstyle =$ $\displaystyle 2 K_{m} \left\{
\left( \DP{u}{x} \right)^{2}
+ \left( \DP{w}{z} \right)^{2}
\right\}
+ K_{m}
\left(\DP{u}{z} + \DP{w}{x}\right)^{2}$  
    $\displaystyle - \frac{2}{3} E \left( \DP{u}{x} + \DP{w}{z} \right)$ (B.23)

$B$G$"$k(B. $BMpN.%(%M%k%.!<3H;69`(B $D_{E}$ $B$O(B,
$\displaystyle D_{E}$ $\textstyle =$ $\displaystyle \DP{}{x_{j}} \left(K_{m} \DP{E}{x_{j}} \right),$  
  $\textstyle =$ $\displaystyle \DP{}{x} \left(K_{m} \DP{E}{x} \right)
+ \DP{}{x} \left(K_{m} \DP{E}{x} \right)$ (B.24)

$B$G$"$k(B. $B0J>e$N(B (B.22), (B.23), (B.24) $B<0$r(B (B.1) $B<0(B $B$KBeF~$9$k$3$H$G0J2<$N<0$rF@$k(B.
$\displaystyle \DD{E}{t}$ $\textstyle =$ $\displaystyle - \frac{g}{\overline{\theta}}
\left( K_{h} \DP{\theta}{z} \right)$  
    $\displaystyle + 2 K_{m} \left\{
\left( \DP{u}{x} \right)^{2}
+ \left( \DP{w}{z}...
...{z} + \DP{w}{x}\right)^{2}
- \frac{2}{3} E \left( \DP{u}{x} + \DP{w}{z} \right)$  
    $\displaystyle + \DP{}{x} \left(K_{m} \DP{E}{x} \right)
+ \DP{}{x} \left(K_{m} \DP{E}{x} \right)
- \left(\frac{C_{\varepsilon}}{l}\right)
E^{\frac{3}{2}}.$ (B.25)

B.1.3 $BMpN.3H;678?t$rMQ$$$?I=8=(B

(B.25) $B<0$r(B (B.7) $B<0$rMQ$$$F(B $K_{m}$ $B$K4X$9$k<0$KJQ7A(B $B$9$k(B. $B1&JU$NMpN.%(%M%k%.!<3H;69`$r=q$-2<$9$H(B,

$\displaystyle \DP{}{x} \left(K_{m} \DP{E}{x}\right)$ $\textstyle +$ $\displaystyle \DP{}{z} \left(K_{m} \DP{E}{z}\right)$  
  $\textstyle =$ $\displaystyle \frac{1}{C_{m}^{2} l^{2}}
\Biggl\{\DP{}{x}
\left(K_{m} \DP{K_{m}^{2}}{x}\right)
+ \DP{}{z}
\left(K_{m} \DP{K_{m}^{2}}{z}\right)
\Biggr\}$  
  $\textstyle =$ $\displaystyle \frac{1}{C_{m}^{2} l^{2}}
\Biggl\{K_{m} \DP[2]{K_{m}^{2}}{x}
+ \D...
...{2}}{x}
+ K_{m} \DP[2]{K_{m}^{2}}{z}
+ \DP{K_{m}}{z}
\DP{K_{m}^{2}}{z}
\Biggr\}$  
  $\textstyle =$ $\displaystyle \frac{K_{m}}{C_{m}^{2} l^{2}}
\left(\DP[2]{K_{m}^{2}}{x}
+ \DP[2]...
...Biggl\{\left(\DP{K_{m}}{x}\right)^{2}
+ \left(\DP{K_{m}}{z}\right)^{2}
\Biggr\}$  

$B$H$J$k$N$G(B, (B.25) $B<0$rJQ7A$9$k$H(B,
$\displaystyle \frac{2 K_{m}}{C_{m}^{2} l^{2}} \DD{K_{m}}{t}$ $\textstyle =$ $\displaystyle - \frac{g}{\overline{\theta}}
\left( K_{h} \DP{\theta}{z} \right)...
...m} \left\{
\left( \DP{u}{x} \right)^{2}
+ \left( \DP{w}{z} \right)^{2}
\right\}$  
    $\displaystyle + K_{m}
\left(\DP{u}{z} + \DP{w}{z}\right)^{2}
- \frac{2}{3} \frac{K_{m}^{2}}{C_{m}^{2} l^{2}} \left( \DP{u}{x} + \DP{w}{z} \right)$  
    $\displaystyle + \frac{K_{m}}{C_{m}^{2} l^{2}}
\left(\DP[2]{K_{m}^{2}}{x}
+ \DP[...
...Biggl\{\left(\DP{K_{m}}{x}\right)^{2}
+ \left(\DP{K_{m}}{z}\right)^{2}
\Biggr\}$  
    $\displaystyle - \frac{C_{\varepsilon}}{C_{m}^{3} {l}^{4}}
K_{m}^{3}.$ (B.26)

$B78?t$r@0M}$9$k$H(B,
$\displaystyle \DP{K_{m}}{t}$ $\textstyle =$ $\displaystyle - \left(
u \DP{K_{m}}{x} + w \DP{K_{m}}{z}
\right)
- \frac{g C_{m...
...} l^{2}}{ 2 \overline{\theta}} \frac{K_{h}}{K_{m}}
\left(\DP{\theta}{z} \right)$  
    $\displaystyle + \left( C_{m}^{2} l^{2} \right) \left\{
\left( \DP{u}{x} \right)^{2}
+ \left( \DP{w}{z} \right)^{2}
\right\}$  
    $\displaystyle + \frac{ C_{m}^{2} l^{2} }{2}
\left( \DP{u}{z} + \DP{w}{z}\right)^{2}
- \frac{K_{m}}{3}
\left( \DP{u}{x} + \DP{w}{z} \right)$  
    $\displaystyle + \Dinv{2}
\left(\DP[2]{K_{m}^{2}}{x}
+ \DP[2]{K_{m}^{2}}{z}
\right)
+ \left(\DP{K_{m}}{x}\right)^{2}
+ \left(\DP{K_{m}}{z}\right)^{2}$  
    $\displaystyle - \frac{C_{\varepsilon}}{2 C_{m} l^{2}} K_{m}^{2}$  

$B$H$J$j(B, $B$3$3$G(B $C_{m} = C_{\varepsilon} = 0.2$ $B$H(B $K_{h} = 3 K_{m}$ $B$H$$$&(B $B4X78$rMQ$$$k$H(B,
$\displaystyle \DP{K_{m}}{t}$ $\textstyle =$ $\displaystyle - \left(
u \DP{K_{m}}{x} + w \DP{K_{m}}{z}
\right)
- \frac{3 g C_{m}^{2} l^{2}}{ 2 \overline{\theta}}
\left(\DP{\theta}{z} \right)$  
    $\displaystyle + \left( C_{m}^{2} l^{2} \right) \left\{
\left( \DP{u}{x} \right)^{2}
+ \left( \DP{w}{z} \right)^{2}
\right\}$  
    $\displaystyle + \frac{ C_{m}^{2} l^{2} }{2}
\left( \DP{u}{z} + \DP{w}{x}\right)^{2}
- \frac{K_{m}}{3}
\left( \DP{u}{x} + \DP{w}{z} \right)$  
    $\displaystyle + \Dinv{2}
\left(\DP[2]{K_{m}^{2}}{x}
+ \DP[2]{K_{m}^{2}}{z}
\right)
+ \left(\DP{K_{m}}{x}\right)^{2}
+ \left(\DP{K_{m}}{z}\right)^{2}$  
    $\displaystyle - \Dinv{2 l^{2}} K_{m}^{2}$ (B.27)

$B$H$J$k(B.


next up previous
: C. $B1@HyJ*M}2aDx(B : $B<>=aBg5$$K$*$1$k(B 2 $B : A. $B=`05=LJ}Dx<07O$NF3=P(B
SUGIYAMA Ko-ichiro $BJ?@.(B21$BG/(B3$B7n(B6$BF|(B