next up previous contents
: $BJQ7A%*%$%i! : $BI|=,(B:$B%W%j%_%F%#%VJ}Dx<07O$HJQ7A%*%$%i! : $B5eLL>e$N05NO:BI87O$K$*$1$k%W%j%_%F%#%VJ}Dx<0(B   $BL\

$B%*%$%i!

$B$"$kJ*M}NL(B$ A$$B$NBS>u(B($BEl@>(B)$BJ?6Q$r(B $ \overline{A}$$B$GI=$9$3$H$K$9$k$H(B
$\displaystyle \overline{A}(\phi, p, t) = \Dinv{2\pi}\int_0^{2\pi} A(\lambda, \phi, p, t) \Dd \lambda$      

$B$H=q$1$k(B. $BB>$NFHN)JQ?t(B( $ \phi, p, t$)$B$K$D$$$F$O8GDj$7$FJ?6Q$9$k$N$G(B, $B$3$l$O%*%$%i!uJ?6Q$+$i$N$:$l$r(B$ A'$$B$H$9$k$H(B
$\displaystyle A' = A - \overline{A}$      

$B$G$"$k(B. $B$3$N$H$-(B $ \overline{A'}=0$, $ \partial \overline{A}/\partial\lambda = 0$$B$H$J$k$3$H$KCm0U(B. (2.1)$B$NBS>uJ?6Q$r9M$($k(B. (2.1)$BCf$N3FNL$rBS>[email protected],$H$:[email protected],$KJ,$1$F=q$/$H(B
\begin{subequations}\begin{align}
 \DP{}{t}(\overline{u} + u') &
 + \frac{\overl...
...theta} + \theta')\notag\\  
 &= \overline{Q} + Q'
 \end{align}\end{subequations}

$B$H$J$k(B. $B>e5-$rJQ7A$7$F(B, $B:8JU$KJ?6QNL$HJ?6QNLF1;N$N@Q$N9`$r(B, $B1&JU$K$=$l0J30$N9`$r$^$H$a$k$H(B
\begin{subequations}\begin{align}
 \DP{\overline{u}}{t} &
 + \frac{\overline{u}}...
...rline{\theta}}{p}
 - \omega'\DP{\theta'}{p}
 + Q'
 \end{align}\end{subequations}

$B$H=q$1$k(B. (2.3)$B$r%*%$%i!
\begin{subequations}\begin{align}
 \DP{\overline{u}}{t}&
 + \Dinv{a}\overline{v}...
...eta'}{\phi}}
 - \overline{\omega'\DP{\theta'}{p}}
 \end{align}\end{subequations}

$B$H$J$k(B. $B$3$3$G(B(2.3.4), (2.4.4) $B$+$iEl@>J?6Q$+$i$N$:$l$K4X$9$kO"B3$N<0(B
$\displaystyle \Dinv{a\cos\phi}\left[\DP{u'}{\lambda}
+ \DP{}{\phi}(v'\cos\phi)\right]
+ \DP{\omega'}{p}
= 0$     (2.0.5)

$B$,F@$i$l$k(B. $B$3$3$G(B$ u' \times $(2.5)$B$N%*%$%i!2.4.1)$B$KB-$72C$($k$H(B,

$\displaystyle \DP{\overline{u}}{t}$ $\displaystyle + \Dinv{a}\overline{v}\DP{\overline{u}}{\phi}
 + \overline{\omega...
...rline{v} 
 - \frac{\tan\phi}{a}\overline{u}\overline{v}
 - \overline{X} =\notag$    
  $\displaystyle - \Dinv{a\cos\phi}\overline{u'\DP{u'}{\lambda}}
 - \Dinv{a}\overline{v'\DP{u'}{\phi}}
 - \overline{\omega'\DP{u'}{p}}\notag$    
  $\displaystyle - \Dinv{a\cos\phi}\overline{u'\DP{u'}{\lambda}}
 - \Dinv{a}\overl...
...}{\phi}}
 - \overline{u'\DP{\omega'}{p}}
 + \frac{2\tan\phi}{a}\overline{u'v'}.$    

$B$3$N$H$-(B

$\displaystyle - \Dinv{a\cos\phi}\overline{u'\DP{u'}{\lambda}}
 - \Dinv{a\cos\phi}\overline{u'\DP{u'}{\lambda}}$ $\displaystyle = - \Dinv{a\cos\phi}\overline{\DP{(u')^2}{\lambda}}$    
  $\displaystyle = 0,$    
$\displaystyle - \Dinv{a}\overline{v'\DP{u'}{\phi}}
 - \Dinv{a}\overline{u'\DP{v'}{\phi}}
 + \frac{2\tan\phi}{a}\overline{u'v'}$ $\displaystyle = -\Dinv{a\cos^2\phi}\DP{}{\phi}(\overline{v'u'}\cos^2\phi)$    
$\displaystyle - \overline{\omega'\DP{u'}{p}}
 - \overline{u'\DP{\omega'}{p}}$ $\displaystyle = -\DP{}{p}(\overline{\omega'u'})$    

$B$rMQ$$$k$H(B,

  $\displaystyle \DP{\overline{u}}{t}
 + \Dinv{a}\overline{v}\DP{\overline{u}}{\ph...
...ine{v} 
 - \frac{\tan\phi}{a}\overline{u}\overline{v}
 - \overline{X} =
 \notag$    
  $\displaystyle \hspace{5em}
 -\Dinv{a\cos^2\phi}\DP{}{\phi}(\overline{v'u'}\cos^2\phi)
 -\DP{}{p}(\overline{\omega'u'})$    

$B$H=q$/$3$H$,$G$-$k(B. (2.4.2), (2.4.5)$B$K$D$$$F$bF1MM$N
$\displaystyle \begin{itemize}
 <tex2html_comment_mark> \item $B1?F0J}Dx<0(B
 <tex2h...
...'}\cos\phi)
 - \DP{}{p}(\overline{\omega'\theta'}).
 \end{align}
 \end{itemize}$

$B$H$J$k(B . $B0J9_(B, (2.6)$B$r(B$B%*%$%i!$B$H8F$V(B.
next up previous contents
: $BJQ7A%*%$%i! : $BI|=,(B:$B%W%j%_%F%#%VJ}Dx<07O$HJQ7A%*%$%i! : $B5eLL>e$N05NO:BI87O$K$*$1$k%W%j%_%F%#%VJ}Dx<0(B   $BL\
Tsukahara Daisuke $BJ?@.(B16$BG/(B11$B7n(B26$BF|(B