next up previous
: 10 $BCO5eDj?t(B : DCAPM3 $BBh(B1$BIt(B $B?tM}%b%G%k2=(B : 8 $B1tD>%U%#%k%?!<(B


9 $B;YG[J}Dx<07O$NF3=P(B

$B;YG[J}Dx<07O$NF3=P(B

6% latex2html id marker 7331
\setcounter{footnote}{6}\fnsymbol{footnote} 66 6% latex2html id marker 7332
\setcounter{footnote}{6}\fnsymbol{footnote} 66

A. $B@_Dj(B

$BA4Bg5$$O(B, $B$H$b$KM}A[5$BN$G$"$k4%Ag6u5$$*$h$S?e>x5$$+$i@.$k:.9gBg5$$H$9(B $B$k(B. $B1@?eNL$OL5;k$9$k(B. $B$^$?(B, $B?e>x5$NL$,A4Bg5$$K@j$a$k3d9g$O>.$5$$$H2>Dj(B $B$7(B, $BA4Bg5$$NDj05HfG.$r4%AgBg5$$NCM$G6a;w$9$k(B.

$B?e>x5$NL$NJ]B8$K$D$$$F$O(B, $B6E7k$*$h$S>xH/$K$h$k@8@.>CLG$r9MN8$9$k(B. $B$7$+(B $B$7(B, $B$3$NNL$,A4Bg5$$KM?$($k8z2L$O>.$5$$$H$7(B, $BA4Bg5$$N $B=ENO2CB.EY$OCO5eCf?4$K8~$$$F$$$k$H2>Dj$9$k(B. $B$^$?(B, $B1?F0$N?eJ?%9%1!<%k$,(B $B1tD>%9%1!<%k$h$j$b$+$J$jBg$-$$1?F0$rA[Dj$7(B, $B@ENO3XJ?9U6a;w$r9T$J$&(B. $B$5(B $B$i$K(B, $B1?F0$OCO5eI=LLIU6a$K8B$i$l$k$3$H$r2>Dj$7$F6a;w$r9T$J$&(B. 6% latex2html id marker 7334
\setcounter{footnote}{6}\fnsymbol{footnote} 66 6% latex2html id marker 7335
\setcounter{footnote}{6}\fnsymbol{footnote} 66

B. $B4pACJ}Dx<07O$NF3=P(B

$BJ}Dx<07O$O(B 6 $BK\$NM=JsJ}Dx<0$H(B 1 $BK\$N?GCGJ}Dx<0$+$i$J$k(B. $BM=JsJ}Dx<0$O(B, $BA4x5$NL$N<0(B, $B1?F0J}Dx<0(B(3 mail protected],(B), $BG.NO3X$N<0$+$i$J$k(B. $B$3$l$i$O(B, $B$=$l$>$l(B, $BA4x5$NL$NJ]B8B'(B, $BA4uBVJ}Dx<0$rMQ$$$k(B. 7

$B!*!*Cm0U(B: $B$3$N(B Appendix $BCf$G$OF3=P$NET9g>e(B, $B4%Ag6u5$$N5$BNDj?t$r(B $R^d$ $BDj05HfG.$r(B $c_p^d$ $B$H$7(B, $BA4Bg5$$N5$BNDj?t$r(B $R$ $B$H$*$$$?(B. $B$7$+$7(B, $BK\J8(B $BCf$G$O(B, $B4%Ag6u5$$N5$BNDj?t$r(B $R$, $BDj05HfG.$r(B $c_p$ $B$HI=5-$7$F$$$k(B.

B..1 $B>uBVJ}Dx<0(B

$B4%Ag6u5$(B, $B?e>x5$$N>uBVJ}Dx<0$O$=$l$>$l(B

$\displaystyle p^d$ $\textstyle =$ $\displaystyle \rho^{d} R^d T,$ (99)
$\displaystyle p^v$ $\textstyle =$ $\displaystyle \rho^{v} R^v T,$ (100)

$B$G$"$k(B. $B$3$3$G(B $\bullet^d$, $\bullet^v$ $B$O$=$l$>$l4%Ag6u5$$*$h$S?e(B $B>x5$$K4X$9$kNL$G$"$k$3$H$r<($9(B. $B$7$?$,$C$F(B, $BA405(B $p=p^d+p^v$ $B$O(B,
$\displaystyle p$ $\textstyle =$ $\displaystyle (\rho^d R^d + \rho^v R^v) T$ (101)
  $\textstyle =$ $\displaystyle \rho R^d ( 1 + \epsilon_v q ) T,$ (102)

$B$H$J$k(B. $B$3$3$G(B, $q=\rho_v/\rho$ $B$OHf<>(B, $B$G$"$j(B, $\epsilon_v \equiv
1/\epsilon -1$, $\epsilon \equiv R^d/R^v(=0.622)$ $B$G$"$k(B. $B$7$?$,$C$F(B, $BA4Bg5$$N>uBVJ}Dx<0$O(B,
\begin{displaymath}
p = \rho R T.
\end{displaymath} (103)

$B$?$@$7(B, $R \equiv R^d ( 1+\epsilon_v q )$ $B$G$"$k(B. $B$"$k$$$O(B, $B2>29EY(B $T_v \equiv T ( 1 + \epsilon_v q )$ $B$rMQ$$$l$P(B,
\begin{displaymath}
p = \rho R^d T_v.
\end{displaymath} (104)

B..2 $BO"B3$N<0(B

$BA4Bg5$$Nx5$$N@8@.>CLG$rL5;k$9$l$P(B, 8

\begin{displaymath}
\DP{\rho}{t}
+ \DP{}{x_j}( \rho v_j )
= 0.
\end{displaymath} (105)

$B$"$k$$$O(B, $B%i%0%i%s%8%e7A<0$G5-=R$9$l$P(B,
\begin{displaymath}
\DD{\rho}{t}
+ \rho \Ddiv \Dvect{v}
= 0.
\end{displaymath} (106)

B..3 $B?e>x5$$N<0(B

$B?e>x5$L)EY(B $\rho^v$ $B$KBP$9$kCLGNL$r(B $S$ $B$H$9$l$P(B,

\begin{displaymath}
\DP{\rho^v}{t}
+ \DP{}{x_j} ( \rho^v v_j )
= S.
\end{displaymath} (107)

$BHf<>(B $q=\rho^v/\rho$ $B$K4X$9$k<0$O(B, $B86M}E*$K$O<0(B([*]) $B$H<0(B(A.9) $B$+$iF@$k$3$H$,$G$-$k(B. $B$7$+$7(B, $B:#$N>l9g(B, $B<0(B(A.7)$B$G?e>x5$$N@8@.>CLG$rL5;k$7$?$N$G(B, $B@5$7$/$OF@$i$l$J$$(B. $B$=$3$GHf<>$N@8@.>CLG$K4X$9$k9`$r2~$a$F(B $S_q$ $B$HDj(B $B5A$9$k(B.
\begin{displaymath}
\DD{q}{t} = S_q.
\end{displaymath} (108)

B..4 $B1?F0J}Dx<0(B

$B1?F0NLJ]B8B'$O(B, $B?e>x5$$N@8@.>CLG$K$H$b$J$&1?F0NLJQ2=$rL5;k$9$l$P

\begin{displaymath}
\DP{}{t}(\rho v_i)
+ \DP{}{x_j}( \rho v_i v_j )
+ \DP{p}{x_i}
- \DP{\sigma_{ij}}{x_j}
+ \rho \DP{\Phi^*}{x_i}
= F'_i.
\end{displaymath} (109)

$B$3$3$G(B, $p$ $B$O05NO(B, $\sigma_{ij}$ $B$OG4@-1~NO%F%s%=%k(B, $\Phi^*$ $B$OCO5e(B $B$N0zNO$K$h$k%]%F%s%7%c%k(B 9 , $F'_i$ $B$O$=$NB>$N30NO9`$G$"$k(B. $B$"$k$$$OO"B3$N<0(B $B$rMQ$$$F%i%0%i%s%8%e7A<0$G5-=R$9$k$H(B

\begin{displaymath}
\rho \DD{v_i}{t}
+ \DP{p}{x_i}
- \DP{\tau_{ij}}{x_j}
+ \rho \DP{\Phi^*}{x_i}
= F'_i,
\end{displaymath} (110)

$B$H$J$k(B. $B$3$3$G(B, $BG4@-9`$H30NO9`$r(B $F_i$ $B$H$*$-(B, $B$5$i$K%Y%/%H%kI=<($9$k(B
\begin{displaymath}
\rho \DD{\Dvect{v}}{t}
+ \Dgrad p
+ \rho \Dgrad \Phi^*
= \Dvect{F}.
\end{displaymath} (111)

B..5 $BG.NO3X$N<0(B

$BC10L $B$HFbIt%((B $B%M%k%.!<(B $\varepsilon$ $B$*$h$\%]%F%s%7%c%k%(%M%k%.!<(B $\Phi^*$ $B$NOB$GI=(B $B8=$5$l$k(B. $B$3$N;~4VJQ2=N($N<0$O(B, $B?e>x5$$N@8@.>CLG$K$h$k1F6A$rL5;k$9$l$P(B,

\begin{displaymath}
\DP{}{t}
\left[ \rho
\left( \frac{1}{2} \Dvect{v}^2
+...
...v_j
+ p v_j - \sigma_{ij}v_i
\right]
= \rho Q + F'_i v_i,
\end{displaymath} (112)

$B$G$"$k(B. $B$3$3$G(B, $Q$ $B$O303&$+$i$N2CG.N($G$"$k(B. $B0lJ}(B, $B1?F0%(%M%k%.!<$H%](B $B%F%s%7%c%k%(%M%k%.!<$NOB$NJ]B8<0$O(B, $B1?F0NLJ]B8<0(B ([*]) $B$K(B $v_i$ $B$r$+$1O"B3$N<0$rMQ$$$FJQ7A$9$k$3$H$GF@$i$l$k(B. $BJQ7A$N:]$K(B $B$O(B $\DP{\Phi^*}{t}=0$ $B$G$"$k$H$7$F$$$k(B. 10
\begin{displaymath}
\DP{}{t} \left( \frac{1}{2} \rho v_i^2 + \rho \Phi^* \right...
...ht)
= p \DP{v_j}{x_j} - \sigma_{ij} \DP{v_i}{x_j} + F'_i v_i,
\end{displaymath} (113)

$B$H$J$k(B. $B<0(B (A.14) $B$+$i<0(B ([*]) $B$r0z$-5n$k$H(B, $B
\begin{displaymath}
\DP{}{t} ( \rho \varepsilon )
+ \DP{}{x_j} ( \rho \varepsi...
... )
= - p \DP{v_j}{x_j} + \sigma_{ij} \DP{v_i}{x_j}
+ \rho Q.
\end{displaymath} (114)

$BO"B3$N<0$rMQ$$$F%i%0%i%s%8%e7A<0$K=q$-D>$;$P(B
\begin{displaymath}
\rho \DD{\varepsilon}{t}
= \frac{p}{\rho} \left( \DD{\rho}{t} \right)
+ \rho Q.
\end{displaymath} (115)

$B$3$3$G(B, $B303&$+$i$N2CG.$N9`$HG4@-$K$h$k2CG.$N9`$r$^$H$a$F(B $Q^*$ $B$H$*$$(B $B$?(B.

$BFbIt%(%M%k%.!<$r29EY$rMQ$$$FI=8=$9$k$H(B $\varepsilon = c_v T$ $B$G$"(B $B$k(B. $B$5$i$K>uBVJ}Dx<0(B (A.5) $B$rMQ$$$F<0(B (A.17) $B$rJQ7A$9$k(B. $c_p = c_v + R$ $B$G$"$k$3$H$KCm0U$9$l$P(B

\begin{displaymath}
\DD{c_p T}{t} = \frac{1}{\rho} \DD{p}{t} + Q^*,
\end{displaymath} (116)

$B$H$J$k(B. $B$3$3$G(B, $c_p$ $B$r4%Ag6u5$$NDj05HfG.(B $c_p^d$ ($BDj?t(B) $B$G6a;w$9$k$H(B 11$B
\begin{displaymath}
\DD{T}{t} = \frac{1}{c_p^d \rho} \DD{p}{t} + \frac{Q^*}{c_p^d}.
\end{displaymath} (117)

11 1111 11 1111

C. $B2sE>7O$X$NJQ49(B

C..1 $B2sE>7O$X$NJQ498x<0(B

$BJ}Dx<07O$r(B, $B0lDj$N<+E>3QB.EY(B $\Dvect{\Omega}$ $B$G2sE>$9$k2sE>7O$KJQ49$9(B $B$k(B.

C..2 $B%9%+%i!<$NJQ498x<0(B

$B47@-7O$K$*$1$k;~4VHyJ,$rE:;z(B a $B$G(B, $B2sE>7O$rE:;z(B r $B$GI=8=$9$k(B. $B$3$N$H$-(B, $BG$0U$N%9%+%i!<(B $\psi$ $B$KBP$7$F(B,

\begin{displaymath}
\left( \DD{\psi}{t} \right)_{\rm a}
= \left( \DD{\psi}{t} \right)_{\rm r},
\end{displaymath} (118)

$B$,@.$j$?$D(B. 12

C..3 $B%Y%/%H%k$NJQ498x<0(B

$BG$0U$N%Y%/%H%k(B $\Dvect{A}$ $B$KBP$9$k47@-7O$*$h$S2sE>7O$G$NHyJ,$O

\begin{displaymath}
\left( \DD{\Dvect{A}}{t} \right)_{\rm a}
= \left( \DD{\Dvect{A}}{t} \right)_{\rm r}
+ \Dvect{\Omega} \times \Dvect{A}.
\end{displaymath} (119)

($B>ZL@(B) $BG$0U$N%Y%/%H%k(B $\Dvect{A}$ $B$r(B, $B47@-7O$G$O(B

  $\textstyle \Dvect{A} =$ $\displaystyle \Dvect{i} A_x
+ \Dvect{j} A_y
+ \Dvect{k} A_z$ (120)

$B$HI=$7(B, $B2sE>7O$G$O(B
  $\textstyle \Dvect{A} =$ $\displaystyle \Dvect{i}' A'_x
+ \Dvect{j}' A'_y
+ \Dvect{k}' A'_z$ (121)

$B$HI=$9(B. $B;~4VHyJ,$r$H$k$H(B
$\displaystyle \left( \DD{\Dvect{A}}{t} \right)_{\rm a}$ $\textstyle =$ $\displaystyle \Dvect{i} \left( \DD{A_x}{t} \right)_{\rm a}
+ \Dvect{j} \left( \DD{A_y}{t} \right)_{\rm a}
+ \Dvect{k} \left( \DD{A_z}{t} \right)_{\rm a}$  
  $\textstyle =$ $\displaystyle \Dvect{i}' \left( \DD{A'_x}{t} \right)_{\rm a}
+ \Dvect{j}' \left...
...t{j}'}{t} \right)_{\rm a} A'_y
+ \left( \DD{\Dvect{k}'}{t} \right)_{\rm a} A'_z$  
  $\textstyle =$ $\displaystyle \Dvect{i}' \left( \DD{A'_x}{t} \right)_{\rm r}
+ \Dvect{j}' \left...
...+ \Dvect{\Omega} \times \Dvect{j}' A'_y
+ \Dvect{\Omega} \times \Dvect{k}' A'_z$  
  $\textstyle =$ $\displaystyle \left( \DD{\Dvect{A}}{t} \right)_{\rm r}
+ \Dvect{\Omega} \times \Dvect{A}.$ (122)

($B>ZL@=*$j(B)

$B$3$3$G(B $\Dvect{A}=\Dvect{r}$ ( $\Dvect{r}$ $B$O0LCV%Y%/%H%k(B ) $B$H$*$1$P47(B $B@-7O$G$NB.EY(B $\Dvect{v}_a \equiv (d\Dvect{r}/dt)_{\rm a}$ ($B$3$l$^$G$N(B $\Dvect{v}$) $B$O2sE>7O$G$NB.EY(B $\Dvect{v} \equiv (d\Dvect{r}/dt)_{\rm
r}$ $B$rMQ$$$F

\begin{displaymath}
\Dvect{v}_a = \Dvect{v} + \Dvect{\Omega} \times \Dvect{r}.
\end{displaymath} (123)

$B$5$i$K(B, $B<0(B(A.21) $B$G(B $\Dvect{A}=\Dvect{v}_{\rm a}$ $B$H$*(B $B$1$P(B, $BB.EY$N;~4VHyJ,9`$O(B
\begin{displaymath}
\DD{\Dvect{v}_a}{t}
= \DD{\Dvect{v}}{t} + 2 \Dvect{\Omega}...
...
+ \Dvect{\Omega} \times ( \Dvect{\Omega} \times \Dvect{r} ),
\end{displaymath} (124)

$B$HJQ49$G$-$k(B.

C..4 $B2sE>7O$X$NJQ49(B

$BJQ49$N<0(B (A.26) $B$rMQ$$$F1?F0J}Dx<0$r2sE>7O$G5-=R$9$k(B.

\begin{displaymath}
\DD{\Dvect{v}}{t}
= - \frac{1}{\rho} \Dgrad p
- 2 \Dvect...
...vect{\Omega} \times \Dvect{r} )
+ \Dgrad \Phi^* + \Dvect{F}.
\end{displaymath} (125)

$B$3$3$G(B, $B=ENO2CB.EY(B $\Dvect{g} \equiv \Dgrad \Phi^* - \Dvect{\Omega}
\times ( \Dvect{\Omega} \times \Dvect{v})$ $B$rDj5A$9$l$P(B, $B1?F0J}Dx<0$O(B
\begin{displaymath}
\DD{\Dvect{v}}{t}
= - \frac{1}{\rho} \Dgrad p
- 2 \Dvect{\Omega} \times \Dvect{v}
+ \Dvect{g} + \Dvect{F},
\end{displaymath} (126)

$B$H$J$k(B.

$BO"B3$N<0$*$h$SG.NO3X$N<0$K$*$$$F$O(B, $B%i%0%i%s%8%eHyJ,$,:nMQ$7$F$$$kL)EY(B $B$*$h$S29EY$O:BI8JQ49$KL54X78$J%9%+%i!<$G$"$k$?$a(B, $B$=$N;~4VHyJ,$N7A$OJQ(B $B$o$i$J$$(B. $BO"B3$N<0$O(B, $BB.EY>l$NH/;6$r4^$`$,(B, $B$3$l$O:BI8JQ49$K$h$C$F$bCM(B $B$OJQ$o$i$J$$(B. $B$7$?$,$C$F(B, $B$3$l$i$N<0$O7A$rJQ$($J$$(B. 13 13 1313 13 1313

D. $B5e:BI8$X$NJQ49(B

D..1 $BD>8r6J@~:BI87O$K$*$1$kHyJ,(B

$B0lHL$ND>8r6J@~:BI8(B $(\xi_1, \xi_2, \xi_3)$ $B$K$*$$$F(B, $B%9%+%i!<(B $\bullet$ $B$*$h$S%Y%/%H%k(B $\Dvect{A}=(A_1, A_2, A_3)$ $B$O $B$O3F<4J}8~$N5,LO0x;R$G$"$j(B, $B3F<4J}8~$N4pDl%Y%/%H%k(B $B$O(B $\Dvect{e}_i$ $B$H$9$k(B.

\begin{displaymath}
\Dgrad \bullet
= \left( \frac{1}{h_1} \DP{\bullet}{\xi_1},...
...{\bullet}{\xi_2},
\frac{1}{h_3} \DP{\bullet}{\xi_3} \right),
\end{displaymath} (127)


\begin{displaymath}
\Ddiv \Dvect{A}
= \frac{1}{h_1 h_2 h_3}
\left[ \DP{}{\x...
...\xi_2} ( h_1 h_3 A_2)
+ \DP{}{\xi_3} ( h_1 h_2 A_3)
\right],
\end{displaymath} (128)


\begin{displaymath}
\nabla^2 \bullet
= \frac{1}{h_1 h_2 h_3}
\left[ \DP{}{\...
...eft( \frac{h_1 h_2}{h_3} \DP{\bullet}{\xi_3} \right)
\right],
\end{displaymath} (129)


\begin{displaymath}
\Drot \Dvect{A}
= \left( \frac{1}{h_2 h_3}
\left[ \DP{(h_...
...DP{(h_2 A_2)}{\xi_1} - \DP{(h_1 A_1)}{\xi_2} \right]
\right),
\end{displaymath} (130)


\begin{displaymath}
\DD{\bullet}{t}
= \DP{\bullet}{t}
+ \frac{v_1}{h_1} \DP{...
...2} \DP{\bullet}{\xi_2}
+ \frac{v_3}{h_3} \DP{\bullet}{\xi_3},
\end{displaymath} (131)


\begin{displaymath}
\DD{\Dvect{v}}{t}
= \sum^3_{k=1} \Dvect{e}_k
\left[ \DP{v...
...{v_k}{h_k} \frac{1}{h_j} \DP{h_k}{\xi_j} \right) v_j
\right].
\end{displaymath} (132)

D..2 $B5e:BI87O$K$*$1$kHyJ,(B

$B=ENO2CB.EY(B $\Dvect{g}$ $B$,CO5eCf?4$r8~$$$F$$$k$H$_$J$7$F(B, $BJ}Dx<07O$r5e(B $B:BI8(B $(\xi_1, \xi_2, \xi_3) = (\lambda, \varphi, r)$ $B$KJQ49$9$k(B. $B2sE>(B $B7O$K8GDj$7$?D>8rD>@~:BI8(B $(x_1, x_2, x_3)$ $B$H$N4X78$O(B

$\displaystyle x_1$ $\textstyle =$ $\displaystyle r \cos \varphi \cos \lambda,$ (133)
$\displaystyle x_2$ $\textstyle =$ $\displaystyle r \cos \varphi \sin \lambda,$ (134)
$\displaystyle x_3$ $\textstyle =$ $\displaystyle r \sin \varphi,$ (135)

$B$G$"$k(B. $B$3$3$G(B, $\lambda$ $B$O0^EY(B, $\varphi$ $B$O7PEY(B, $r$ $B$O1tD>:BI8$G$"(B $B$k(B. $B$^$?(B, $B4pDl%Y%/%H%k$r(B $(\Dvect{e}_{\lambda}, \Dvect{e}_{\varphi},
\Dvect{e}_{r})$, $BB.EY%Y%/%H%k$r(B $(u, v, w)$ $B$GI=$9(B.

$B3FJ}8~$N5,LO0x;R(B( scale factor )$B$O(B

\begin{displaymath}
h_\lambda = r \cos \varphi, \ \ h_\varphi = r, \ \ h_r = 1.
\end{displaymath} (136)

$B$7$?$,$C$F(B, $B%9%+%i!<(B $\bullet$ $B$*$h$S%Y%/%H%k(B $\Dvect{A}=(A_{\lambda}, A_{\varphi}, A_r)$ $B$K4X$9$kHyJ,I=8=$O
\begin{displaymath}
\Dgrad \bullet
= \Dvect{e}_{\lambda} \frac{1}{r \cos \varp...
...c{1}{r} \DP{\bullet}{\varphi}
+ \Dvect{e}_r \DP{\bullet}{r},
\end{displaymath} (137)


\begin{displaymath}
\Ddiv \Dvect{A}
= \frac{1}{r^2 \cos \varphi}
\left[ r \...
...hi A_{\varphi})
+ \cos \varphi \DP{}{r} ( r^2 A_r )
\right],
\end{displaymath} (138)


\begin{displaymath}
\nabla^2 \bullet
= \frac{1}{r^2 \cos \varphi}
\left[ \D...
...}{r} \left( r^2 \cos \varphi \DP{\bullet}{r} \right)
\right],
\end{displaymath} (139)


$\displaystyle \Drot \Dvect{A}$ $\textstyle =$ $\displaystyle \Dvect{e}_{\lambda} \frac{1}{r}
\left[ \DP{A_r}{\varphi} - \DP{}{r}(r A_{\varphi})
\right]$  
    $\displaystyle + \Dvect{e}_{\varphi} \frac{1}{r \cos \varphi}
\left[ \DP{}{r} (r \cos \varphi A_{\lambda}) -
\DP{A_r}{\lambda} \right]$  
    $\displaystyle + \Dvect{e}_r \frac{1}{r \cos \varphi}
\left[ \DP{A_{\varphi}}{\lambda} - \DP{}{\varphi} (\cos
\varphi A_{\lambda}) \right],$ (140)


\begin{displaymath}
\DD{\bullet}{t}
= \DP{\bullet}{t} + \frac{u}{r \cos \varp...
...bda}
+ \frac{v}{r} \DP{\bullet}{\varphi} + w \DP{\bullet}{r},
\end{displaymath} (141)


$\displaystyle \DD{\Dvect{A}}{t}$ $\textstyle =$ $\displaystyle \Dvect{e}_{\lambda} \left[
\DP{A_{\lambda}}{t} + \frac{u}{r \cos ...
..._{\lambda}}{r}
+ \frac{u}{r} A_r - \frac{u \tan \varphi}{r} A_{\varphi} \right]$  
    $\displaystyle + \Dvect{e}_{\varphi} \left[
\DP{A_{\varphi}}{t} + \frac{u}{r \co...
..._{\varphi}}{r}
+ \frac{v}{r} A_r + \frac{u \tan \varphi}{r} A_{\lambda} \right]$  
    $\displaystyle + \Dvect{e}_r \left[
\DP{A_r}{t} + \frac{u}{r \cos \varphi} \DP{A...
...i} + w \DP{A_r}{r}
- \frac{v}{r} A_{\varphi} - \frac{u}{r} A_{\lambda} \right].$ (142)

D..3 $B5e:BI8$X$NJQ49(B

$B<+E>3QB.EY%Y%/%H%k$NI=8=$O

$\displaystyle 2 \Dvect{\Omega} \times \Dvect{v}$ $\textstyle =$ $\displaystyle 2 \Omega ( \Dvect{e}_{\varphi} \cos \varphi
+ \Dvect{e}_r \sin \varphi)
\times ( u \Dvect{e}_{\lambda} + v \Dvect{e}_{\varphi}
+ w \Dvect{e}_r)$ (143)
  $\textstyle =$ $\displaystyle ( 2 \Omega \cos \varphi w - 2 \Omega \sin \varphi v) \Dvect{e}_{\...
...Omega \sin \varphi u \Dvect{e}_{\varphi}
- 2 \Omega \cos \varphi u \Dvect{e}_r.$ (144)

$B$7$?$,$C$F(B, $B1?F0J}Dx<0$O(B
$\displaystyle \DD{u}{t}$ $\textstyle =$ $\displaystyle - \frac{1}{\rho r \cos \varphi } \DP{p}{\lambda}
+ 2 \Omega v \si...
...\Omega w \cos \varphi
+ \frac{u v}{r} \tan \varphi
- \frac{u w}{r}
+ F_\lambda,$ (145)
$\displaystyle \DD{v}{t}$ $\textstyle =$ $\displaystyle - \frac{1}{\rho r} \DP{p}{\varphi}
- 2 \Omega u \sin \varphi
- \frac{u^2}{r} \tan \varphi
- \frac{v w}{r}
+ F_\varphi,$ (146)
$\displaystyle \DD{w}{t}$ $\textstyle =$ $\displaystyle - \frac{1}{\rho} \DP{p}{r} -g
+ 2 \Omega u \cos \varphi
+ \frac{u^2}{r}
+ \frac{v^2}{r}
+ F_r.$ (147)

$BO"B3$N<0$O(B
\begin{displaymath}
\DD{\rho}{t}
+ \frac{1}{r \cos \varphi} \DP{}{\lambda} ( ...
...i} ( \cos \varphi v)
+ \frac{1}{r^2} \DP{}{r} ( r^2 w )
= 0.
\end{displaymath} (148)

$BG.NO3X$N<0$O(B
\begin{displaymath}
\DD{}{t} T = \frac{1}{c_p^d \rho} \DD{p}{t} + \frac{Q^*}{c_p^d}.
\end{displaymath} (149)

$B>uBVJ}Dx<0$O(B
\begin{displaymath}
p = \rho R T.
\end{displaymath} (150)

$B?e>x5$$N<0$O(B
\begin{displaymath}
\DD{q}{t} = S_q.
\end{displaymath} (151)

$B$3$3$G(B,
\begin{displaymath}
\DD{}{t}
= \DP{}{t}
+ \frac{u}{r \cos \phi} \DP{}{\lambda}
+ \frac{v}{r} \DP{}{\phi}
+ w \DP{}{r},
\end{displaymath} (152)

$B$G$"$k(B. 13 1313 13 1313 13 1313

E. $z$-$B:BI8%W%j%_%F%#%VJ}Dx<0(B

E..1 $B@ENO3XJ?9U6a;w(B

$B1tD>J}8~$N1?F0J}Dx<0$KBP$7(B, $B@ENO3XJ?9U6a;w$r9T$J$&(B.

\begin{displaymath}
0 = - \frac{1}{\rho} \DP{p}{z} - g.
\end{displaymath} (153)

$B$3$N$H$-(B, $B1?F0%(%M%k%.!<$NJ]B8B'$r9MN8$7$F(B, $B?eJ?J}8~$N1?F0J}Dx<0$KBP$7(B $B$F$b6a;w$r;\$9(B. $B1?F0%(%M%k%.!<$N<0$O(B, $B1?F0J}Dx<[email protected],$K$=$l$>$l(B $u,
v, w$ $B$r$+$1$k$3$H$GF@$i$l$k(B.
$\displaystyle \DD{}{t} \left( \frac{1}{2} \Dvect{v}^2 \right)$ $\textstyle =$ $\displaystyle u \DD{u}{t} + v \DD{v}{t} + w \DD{w}{t}$  
  $\textstyle =$ $\displaystyle u \biggl\{
- \frac{1}{\rho r \cos \varphi } \DP{p}{\lambda}
+ \un...
... \tan \varphi }_{(3)}
- \underbrace{ \frac{u w}{r} }_{(4)}
+ F_\lambda \biggl\}$  
    $\displaystyle + v \biggl\{ - \frac{1}{\rho r} \DP{p}{\varphi}
- \underbrace{ 2 ...
... \tan \varphi }_{(3)}
- \underbrace{ \frac{v w}{r} }_{(5)}
+ F_\varphi \biggl\}$  
    $\displaystyle + w \biggl\{ - \frac{1}{\rho} \DP{p}{r} -g
+ \underbrace{ 2 \Omeg...
...race{ \frac{u^2}{r} }_{(4)}
+ \underbrace{ \frac{v^2}{r} }_{(5)}
+ F_r \biggl\}$  
  $\textstyle =$ $\displaystyle - \frac{1}{\rho} \Dvect{v} \Dgrad{p} - g w
- \Dvect{v} \cdot \Dvect{F}.$ (154)

$B%3%j%*%j$NNO$*$h$S%a%H%j%C%/9`$OF1$8HV9f$N$b$NF1;N$GBG$A>C$7$"$C$F(B, $B1?(B $BF0%(%M%k%.!<$N;~4VJQ2=$K4sM?$7$J$$$3$H$,$o$+$k(B. 14$B$7$?$,$C$F(B, $B@ENO3XJ?9U6a;w$N:]$K1tD>@.J,$N<0$+$iMn$H$7$?9`(B(2),(4),(5) mail protected],$N<0$N9`$b
$\displaystyle \DD{u}{t}$ $\textstyle =$ $\displaystyle \frac{uv \tan \varphi}{r}
+ fv - \frac{1}{\rho r \cos \varphi} \DP{p}{\lambda}
+ F_{\lambda}$ (155)
$\displaystyle \DD{v}{t}$ $\textstyle =$ $\displaystyle - \frac{u^2 \tan \varphi}{a}
- fu - \frac{1}{\rho r } \DP{p}{\varphi}
+ F_{\varphi}.$ (156)

$B$3$3$G(B, $f$ $B$O%3%j%*%j%Q%i%a!<%?(B $f \equiv 2\Omega \sin \varphi$ $B$G$"(B $B$k(B.

E..2 $BGv$$5e3L6a;w(B

$BBg5$$NAX$,CO5eH>7B$KHf$Y$FGv$$$3$H$r2>Dj$7(B, $BJ}Dx<0Cf$N(B $r$ $B$r(B, $BBeI=E*(B $B$JCO5eH>7B(B $a$ $B$G$*$-$+$($k(B. $B$^$?(B, $r$ $B$K$h$kHyJ,$O$9$Y$F3$H49bEY(B $z$ $B$K$h$kHyJ,$G$*$-$+$($k(B. $B$3$N$H$-4pACJ}Dx<0$O

\begin{displaymath}
\DD{\rho}{t} = - \rho \Ddiv \Dvect{v},
\end{displaymath} (157)


\begin{displaymath}
\DD{q}{t} = S_q,
\end{displaymath} (158)


\begin{displaymath}
\DD{u}{t} = \frac{uv \tan \varphi}{a}
+ fv - \frac{1}{\rho a \cos \varphi} \DP{p}{\lambda}
+ F_{\lambda},
\end{displaymath} (159)


\begin{displaymath}
\DD{v}{t}
= - \frac{u^2 \tan \varphi}{a}
- fu - \frac{1}{\rho a } \DP{p}{\varphi}
+ F_{\varphi},
\end{displaymath} (160)


\begin{displaymath}
0 = - \frac{1}{\rho} \DP{p}{z} - g,
\end{displaymath} (161)


\begin{displaymath}
\DD{T}{t} = \frac{1}{c_p^d \rho} \DD{p}{t} + \frac{Q^*}{c_p^d},
\end{displaymath} (162)


\begin{displaymath}
p = \rho R^d T_v.
\end{displaymath} (163)

$B$3$3$G(B,
\begin{displaymath}
\DD{}{t}
= \DP{}{t}
+ \frac{u}{a \cos \varphi} \DP{}{\lambda}
+ \frac{v}{a} \DP{}{\varphi}
+ w \DP{}{z},
\end{displaymath} (164)


\begin{displaymath}
\Ddiv{\Dvect{v}}
\equiv \frac{1}{a \cos \varphi} \DP{u}{\l...
...cos \varphi} \DP{v}{\varphi}
( v \cos \varphi )
+ \DP{w}{z}.
\end{displaymath} (165)

derivation/derivation-sigmacoord 14 1414 14 1414

F. $B%b%G%k;YG[J}Dx<0(B

F..1 $B12EYJ}Dx<0$HH/;6J}Dx<0(B

$B12EY(B:

\begin{displaymath}
\zeta \equiv \frac{1}{a \cos \varphi} \DP{v}{\lambda}
- \frac{1}{a \cos \varphi} \DP{}{\varphi} ( u \cos \varphi).
\end{displaymath} (166)

$BH/;6(B:
\begin{displaymath}
D \equiv \frac{1}{a \cos \varphi} \DP{u}{\lambda}
+ \frac{1}{a \cos \varphi} \DP{}{\varphi} ( v \cos \varphi).
\end{displaymath} (167)

F..1.1 $B12EYJ}Dx<0(B

$B1?F0J}Dx<0$N(B $u$ $B$N<0$K(B $\frac{1}{a \cos \varphi} \DP{}{\varphi} \cos
\varphi$ $B$r(B $B:nMQ$7(B, $v$ $B$N<0$K(B $\frac{1}{a \cos \varphi} \DP{}{\lambda}$ $B$r(B $B:nMQ$7:9$r$H$C$FJQ7A$9$l$P

$\displaystyle \DP{\zeta}{t}$ $\textstyle =$ $\displaystyle - \frac{1}{a \cos \varphi} \DP{}{\varphi}
( \zeta v \cos \varphi )
- \frac{1}{a \cos \varphi} \DP{}{\lambda}
( \zeta u )$  
    $\displaystyle - \frac{1}{a \cos \varphi} \DP{}{\lambda}
\left[ \dot{\sigma} \DP{v}{\sigma}
+ \frac{R^d T_v}{a p_s} \DP{p_s}{\varphi}
- F_{\varphi} + f u \right]$  
    $\displaystyle - \frac{1}{a \cos \varphi} \DP{}{\varphi}
\left[ - \cos \varphi \...
...a p_s} \DP{p_s}{\lambda}
+ F_{\lambda} \cos \varphi + f v \cos \varphi \right].$ (168)

F..1.2 $BH/;6J}Dx<0(B

$B1?F0J}Dx<0$N(B $u$ $B$N<0$K(B $\frac{1}{a \cos \varphi} \DP{}{\lambda}$ $B$r:n(B $BMQ$7(B, $v$ $B$N<0$K(B $\frac{1}{a \cos \varphi} \DP{}{\varphi} \cos
\varphi$ $B$r:nMQ$7OB$r$H$C$FJQ7A$9$k$H

$\displaystyle \DP{D}{t}$ $\textstyle =$ $\displaystyle \frac{1}{a \cos \varphi} \DP{}{\lambda}
( \zeta v )
- \frac{1}{a \cos \varphi} \DP{}{\varphi}
( \zeta u \cos \varphi)$  
    $\displaystyle - \frac{1}{a \cos \varphi} \DP{}{\lambda}
\left[ \dot{\sigma} \DP...
...frac{R^d T_v}{a \cos \varphi p_s} \DP{p_s}{\lambda}
- F_{\lambda} - f v \right]$  
    $\displaystyle - \frac{1}{a \cos \varphi} \DP{}{\varphi}
\left[ \cos \varphi \do...
..._s}{\varphi} \cos \varphi
- F_{\varphi} \cos \varphi + f u \cos \varphi \right]$  
    $\displaystyle - \nabla^2_{\sigma} ( \Phi + KE).$ (169)

$B$3$3$G(B,
$\displaystyle \nabla^2_{\sigma}$ $\textstyle =$ $\displaystyle \frac{1}{a^2 \cos^2 \varphi} \DP[2]{}{\lambda}
+ \frac{1}{a^2 \cos \varphi} \DP{}{\varphi} ( \cos
\varphi \DP{}{\varphi} ),$ (170)
$\displaystyle KE$ $\textstyle =$ $\displaystyle \frac{u^2 + v^2}{2}.$ (171)

F..2 $BJQ?tJQ49(B

$B;YG[J}Dx<07O$K$*$1$kJQ?t$r(B, $B%b%G%kFbIt$GMQ$$$F$$$kJQ?t$KJQ49$9$k(B. $B$^$:(B, $\mu \equiv \sin \varphi$ $B$rF3F~$9$k(B. $B$^$?B.EY>l(B $u, v$ $B$O(B $U \equiv u
\cos \phi$, $V \equiv \cos \phi$ $B$KJQ49$9$k(B. 15 $B$3$N$H$-(B, $B?eJ?Iw$N12EY(B $\zeta$ $B$HH/;6(B $D$ $B$O $B$*$h$S(B $D$ $B$HDj5A$9$k(B.

$\displaystyle \zeta$ $\textstyle =$ $\displaystyle \frac{1}{a \cos \varphi} \DP{v}{\lambda}
- \frac{1}{a \cos \varphi} \DP{}{\varphi} ( u \cos \varphi)$  
  $\textstyle =$ $\displaystyle \frac{1}{a \cos^2 \varphi} \DP{v \cos \phi}{\lambda}
- \frac{1}{a \cos \varphi} \DP{}{\varphi} ( u \cos \varphi)$  
  $\textstyle =$ $\displaystyle \frac{1}{a ( 1- \mu^2 )} \DP{V}{\lambda}
- \frac{1}{a} \DP{U}{\mu},$ (172)


$\displaystyle D$ $\textstyle =$ $\displaystyle \frac{1}{a \cos \varphi} \DP{u}{\lambda}
+ \frac{1}{a \cos \varphi} \DP{}{\varphi} ( v \cos \varphi)$  
  $\textstyle =$ $\displaystyle \frac{1}{a \cos^2 \varphi} \DP{u \cos \phi}{\lambda}
+ \frac{1}{a \cos \varphi} \DP{}{\varphi} ( v \cos \varphi)$  
  $\textstyle =$ $\displaystyle \frac{1}{a ( 1-\mu^2)} \DP{U}{\lambda}
+ \frac{1}{a} \DP{V}{\mu}.$ (173)

$B?eJ?Iw$K$h$k0\N.$O
$\displaystyle \frac{u}{a \cos\phi}\DP{\bullet}{\lambda}
+ \frac{v}{a} \DP{\bullet}{\phi}$ $\textstyle =$ $\displaystyle \frac{1}{a \cos^2 \phi}
\left\{ \DP{}{\lambda} (u \cos \phi \bull...
...DP{}{\phi} (v \cos \phi \bullet)
- \bullet \DP{}{\phi} ( v \cos \phi ) \right\}$  
  $\textstyle =$ $\displaystyle \frac{1}{a (1-\mu^2)} \DP{}{\lambda} (U\bullet)
-\frac{\bullet}{a...
...\lambda}
+\frac{1}{a \mu} \DP{}{\phi} (V\bullet)
-\frac{\bullet}{a} \DP{V}{\mu}$  
  $\textstyle =$ $\displaystyle \frac{1}{a (1-\mu^2)} \DP{}{\lambda} (U\bullet)
+\frac{1}{a \mu} \DP{}{\phi} (V\bullet)
+\bullet D.$ (174)

$B?eJ?Iw$K$h$k0\N.$N$b$&$R$H$D$N5-=R$rO"B3$N<0$NJQ49$N$?$a$K<($9(B.
$\displaystyle \frac{u}{a \cos\phi}\DP{\bullet}{\lambda}
+ \frac{v}{a} \DP{\bullet}{\phi}$ $\textstyle =$ $\displaystyle + \frac{u \cos \phi }{a \cos^2 \phi}\DP{\bullet}{\lambda}
+ \frac{v \cos \phi }{a \cos \phi } \DP{\bullet}{\phi}$  
  $\textstyle =$ $\displaystyle + \frac{U}{a (1-\mu^2)} \DP{\bullet}{\lambda}
+ \frac{V}{a} \DP{\bullet}{\mu}$  
  $\textstyle \equiv$ $\displaystyle \Dvect{v}_H \cdot \Dgrad_{\sigma} \bullet.$ (175)

$B$3$l$i$rMQ$$$F(B, $BJ}Dx<07O$r $BO"B3$N<0(B 16
\begin{displaymath}
\DP{\pi}{t} + \Dvect{v}_H \cdot \Dgrad_{\sigma} \pi
= -\Dgrad_{\sigma} \cdot \Dvect{v}_H - \DP{\dot{\sigma}}{\sigma}.
\end{displaymath} (176)

$B12EYJ}Dx<0(B
$\displaystyle \DP{\zeta}{t}$ $\textstyle =$ $\displaystyle -\frac{1}{a}\DP{}{\mu} ( \zeta V )
-\frac{1}{a (1-\mu^2)} \DP{}{\lambda} ( \zeta U )$  
    $\displaystyle - \frac{1}{a (1-\mu^2)} \DP{}{\lambda}
\left[ \dot{\sigma} \DP{V}...
...ac{R^d T_v}{a} (1-\mu^2) \DP{\pi}{\mu}
- F_{\varphi} \cos \varphi + f U \right]$  
    $\displaystyle - \frac{1}{a} \DP{}{\mu}
\left[ - \dot{\sigma} \DP{U}{\sigma}
- \frac{R^d T_v}{a} \DP{\pi}{\lambda}
+ F_{\lambda} \cos \varphi + fV \right].$ (177)

$BH/;6J}Dx<0(B
$\displaystyle \DP{D}{t}$ $\textstyle =$ $\displaystyle \frac{1}{a (1-\mu^2)} \DP{}{\lambda} ( \zeta V )
- \frac{1}{a} \DP{}{\mu}
( \zeta U )$  
    $\displaystyle - \frac{1}{a (1-\mu^2)} \DP{}{\lambda}
\left[ \dot{\sigma} \DP{U}...
...
+ \frac{R^d T_v}{a} \DP{\pi}{\lambda}
- F_{\lambda} \cos \varphi - f V \right]$  
    $\displaystyle - \frac{1}{a} \DP{}{\mu}
\left[ \dot{\sigma} \DP{V}{\sigma}
+ \frac{R^d T_v}{a} ( 1-\mu^2 ) \DP{\pi}{\mu}
- F_{\varphi} \cos \varphi + f U \right]$  
    $\displaystyle - \nabla^2_{\sigma} ( \Phi + KE).$ (178)

$BG.NO3X$N<0(B
$\displaystyle \DP{T}{t}$ $\textstyle =$ $\displaystyle - \frac{1}{a(1-\mu^{2})} \DP{UT}{\lambda}
- \frac{1}{a}
\DP{VT}{\mu}
+ T D$  
    $\displaystyle - \dot{\sigma}
\DP{T}{\sigma}
+ \kappa T \left( \DP{\pi}{t}
+ \Dv...
...bla_{\sigma} \pi
+ \frac{ \dot{\sigma} }{ \sigma }
\right)
+ \frac{Q^*}{C_{p}}.$ (179)

$B?e>x5$$N<0(B
$\displaystyle \DP{q}{t}$ $\textstyle =$ $\displaystyle - \frac{1}{a(1-\mu^{2})}
\DP{Uq}{\lambda}
- \frac{1}{a}
\DP{Vq}{\mu}
+ q D$  
    $\displaystyle - \dot{\sigma} \frac{\partial q }{\partial \sigma}
+ S_{q}.$ (180)

$B2>29EY(B $T_v$ $B$r $B$N$_$K0MB8$9$k>l(B $\bar{T}_v(\sigma)$ $B$H(B, $B$=$3$+$i$N$:[email protected],(B $T'_v$ $B$K$o$1$F5-=R$9$k(B.

$B12EYJ}Dx<0$G(B $T_v$ $B$r4^$`9`$O

    $\displaystyle - \frac{1}{a (1-\mu^2)} \DP{}{\lambda}
\left[ + \frac{R^d T_v}{a}...
...]
- \frac{1}{a} \DP{}{\mu}
\left[ - \frac{R^d T_v}{a} \DP{\pi}{\lambda} \right]$  
  $\textstyle =$ $\displaystyle - \frac{1}{a (1-\mu^2)} \DP{}{\lambda}
\left[ + \frac{R^d \bar{T}...
...^2)} \DP{}{\lambda}
\left[ + \frac{R^d T'_v}{a} (1-\mu^2) \DP{\pi}{\mu} \right]$  
    $\displaystyle - \frac{1}{a} \DP{}{\mu}
\left[ - \frac{R^d \bar{T}_v}{a} \DP{\pi...
...
- \frac{1}{a} \DP{}{\mu}
\left[ - \frac{R^d T'_v}{a} \DP{\pi}{\lambda} \right]$  
  $\textstyle =$ $\displaystyle - \frac{1}{a} \frac{R^d \bar{T}_v}{a}
\frac{\partial^2 \pi}{\part...
...^2)} \DP{}{\lambda}
\left[ + \frac{R^d T'_v}{a} (1-\mu^2) \DP{\pi}{\mu} \right]$  
    $\displaystyle + \frac{1}{a} \frac{R^d \bar{T}_v}{a}
\frac{\partial^2 \pi}{\part...
...
- \frac{1}{a} \DP{}{\mu}
\left[ - \frac{R^d T'_v}{a} \DP{\pi}{\lambda} \right]$  
  $\textstyle =$ $\displaystyle - \frac{1}{a (1-\mu^2)} \DP{}{\lambda}
\left[ + \frac{R^d T'_v}{a...
...- \frac{1}{a} \DP{}{\mu}
\left[ - \frac{R^d T'_v}{a} \DP{\pi}{\lambda} \right].$ (181)

$BH/;6J}Dx<0$G(B $T_v$ $B$r4^$`9`$O
    $\displaystyle - \frac{1}{a (1-\mu^2)} \DP{}{\lambda}
\left[ \frac{R^d T_v}{a} \...
...rac{1}{a} \DP{}{\mu}
\left[ \frac{R^d T_v}{a} ( 1-\mu^2 ) \DP{\pi}{\mu} \right]$  
  $\textstyle =$ $\displaystyle - \frac{1}{a (1-\mu^2)} \DP{}{\lambda}
\left[ \frac{R^d \bar{T}_v...
...a (1-\mu^2)} \DP{}{\lambda}
\left[ \frac{R^d T'_v}{a} \DP{\pi}{\lambda} \right]$  
    $\displaystyle - \frac{1}{a} \DP{}{\mu}
\left[ \frac{R^d \bar{T}_v}{a} ( 1-\mu^2...
...ac{1}{a} \DP{}{\mu}
\left[ \frac{R^d T'_v}{a} ( 1-\mu^2 ) \DP{\pi}{\mu} \right]$  
  $\textstyle =$ $\displaystyle - \frac{1}{a^2 (1-\mu^2)} \DP[2]{}{\lambda}
( R^d \bar{T}_v \pi )...
...a (1-\mu^2)} \DP{}{\lambda}
\left[ \frac{R^d T'_v}{a} \DP{\pi}{\lambda} \right]$  
    $\displaystyle - \frac{1}{a^2} \DP{}{\mu}
\left[ (1-\mu^2) \DP{}{\mu} ( R^d \bar...
...ac{1}{a} \DP{}{\mu}
\left[ \frac{R^d T'_v}{a} ( 1-\mu^2 ) \DP{\pi}{\mu} \right]$  
  $\textstyle =$ $\displaystyle - \Dgrad^2_{\sigma} ( R^d \bar{T}_v \pi )
- \frac{1}{a (1-\mu^2)}...
...c{1}{a} \DP{}{\mu}
\left[ \frac{R^d T'_v}{a} ( 1-\mu^2 ) \DP{\pi}{\mu} \right].$ (182)

$BG.NO3X$N<0$N1&JUBh(B1-3$B9`$O
    $\displaystyle - \frac{1}{a(1-\mu^{2})} \DP{UT}{\lambda}
- \frac{1}{a}
\DP{VT}{\mu}
+ T D$  
  $\textstyle =$ $\displaystyle - \frac{1}{a(1-\mu^{2})} \DP{U \bar{T}}{\lambda}
- \frac{1}{a(1-\...
... \frac{1}{a} \DP{V \bar{T}}{\mu}
- \frac{1}{a} \DP{VT'}{\mu}
+ \bar{T} D
+ T' D$  
  $\textstyle =$ $\displaystyle - \frac{\bar{T}}{a(1-\mu^{2})} \DP{U}{\lambda}
- \frac{1}{a(1-\mu...
...1}{a(1-\mu^{2})} \DP{U}{\lambda}
+ \frac{\bar{1}}{a} \DP{V}{\mu} \right]
+ T' D$  
  $\textstyle =$ $\displaystyle - \frac{1}{a(1-\mu^{2})} \DP{UT'}{\lambda}
- \frac{1}{a} \DP{VT'}{\mu}
+ T' D.$ (183)

$B0J>e$rMQ$$$FDx<07O$r5-=R$9$l$P $BO"B3$N<0(B

\begin{displaymath}
\DP{\pi}{t} + \Dvect{v}_H \cdot \Dgrad_{\sigma} \pi
= -\Dgrad_{\sigma} \cdot \Dvect{v}_H - \DP{\dot{\sigma}}{\sigma}.
\end{displaymath} (184)

$B@E?e05$N<0(B
\begin{displaymath}
\DP{\Phi}{\sigma} = - \frac{R^d T_v}{\sigma}.
\end{displaymath} (185)

$B1?F0J}Dx<0(B17
\begin{displaymath}
\DP{\zeta}{t}
= -\frac{1}{a (1-\mu^2)} \DP{VA}{\lambda}
-\frac{1}{a} \DP{UA}{\mu},
\end{displaymath} (186)


\begin{displaymath}
\DP{D}{t}
= \frac{1}{a (1-\mu^2)} \DP{UA}{\lambda}
- \fra...
...A}{\mu}
- \Dgrad^2_{\sigma} ( \Phi + R \bar{T}_v \pi + KE ).
\end{displaymath} (187)

$B$3$3$G(B,
$\displaystyle UA$ $\textstyle \equiv$ $\displaystyle ( \zeta + f ) V
- \dot{\sigma} \DP{U}{\sigma}
- \frac{RT'}{a}
\DP{\pi}{\lambda}
+ F_{\lambda} \cos \varphi$ (188)
$\displaystyle VA$ $\textstyle \equiv$ $\displaystyle - ( \zeta + f ) U
- \dot{\sigma} \DP{V}{\sigma}
- \frac{RT'}{a} ( 1 - \mu^{2} )
\DP{\pi}{\mu}
+ F_{\varphi} \cos \varphi.$ (189)

$BG.NO3X$N<0(B
$\displaystyle \DP{T}{t}$ $\textstyle =$ $\displaystyle - \frac{1}{a(1-\mu^{2})} \DP{UT'}{\lambda}
- \frac{1}{a} \DP{VT'}{\mu}
+ T' D
- \dot{\sigma}
\DP{T}{\sigma}$  
    $\displaystyle \qquad
+ \kappa T \left( \DP{\pi}{t}
+ \Dvect{v}_{H} \cdot \nabla_{\sigma} \pi
+ \frac{ \dot{\sigma} }{ \sigma }
\right)
+ \frac{Q^*}{C_p^d}.$ (190)

$B?e>x5$$N<0(B
\begin{displaymath}
\DP{q}{t}
= - \frac{1}{a(1-\mu^{2})}
\DP{Uq}{\lambda}
-...
...
- \dot{\sigma} \frac{\partial q }{\partial \sigma}
+ S_{q}.
\end{displaymath} (191)

$B<0(B(A.17) $B$GF3F~$7$?(B $Q^*$ $B$+$iG4@-$K$h$k4sM?(B $c_p \mathcal{D}(\Dvect{v})$ $B$r:F$SJ,N%$7(B, $Q^*=Q+c_p \mathcal{D}(\Dvect{v})$ $B$H$9$k(B. $B0lHL$KG4(B $B@-$O1?F0J}Dx<0$K$*$$$FE,Ev$J%Q%i%a%?%j%x5$$N<0$KBP$7$F$=$l$>$l?eJ?3H;69`(B $\mathcal{D}(\zeta)$, $\mathcal{D}(D)$, $\mathcal{D}(T)$, $\mathcal{D}(q)$ $B$r$D$1$k(B. $B$3$N9`$NIU2C$O, $c_p$ $B$r$=$l$>$l(B $R$, $c_p$ $B$N$h$&$K$"$i$?$a$FCV$-$J$*$;$P(B, $B;Y(B $BG[J}Dx<07O(B (3.1) -- (3.6) $B$rF@$k(B.



... $BM}A[5$BN$N>uBVJ}Dx<0$rMQ$$$k(B.7
$B4%Ag6u5$$H?e>x5$$O(B, $BF1$8B.EY$H29EY$r$b$D$3$H$r0EL[$N$&$A$K2>Dj(B $B$7$F$$$k(B. $B$7$?$,$C$F(B, $B?e>x5$$K4X$9$k1?F0NLJ]B8B'$*$h$SA4%(%M%k%.!uBVJ}Dx<0$r9MN8$9$kI,MW$,$J$$(B.
... $B?e>x5$$N@8@.>CLG$rL5;k$9$l$P(B,8
$Bx5$<0$G$O@8@.>CLG$r4^$a$F$$$k(B. $B$7$?$,$C$F(B, $BA4Bg5$$Nx5$$N@8@.>CLG$,5/$-$F$bA4
... $B$N0zNO$K$h$k%]%F%s%7%c%k(B9
$B$3$l$O1s?4NO$r9MN8$7$J$$CO5e$N
... $B$G$"$k$H$7$F$$$k(B.10
$BF3=P$N2aDx$r<($9(B. $B:8JUBh(B1$B9`$HBh(B2$B9`$O
$\displaystyle v_i \DP{}{t} ( \rho v_i )
+ v_i \DP{}{x_j} ( \rho v_j v_i )$ $\textstyle =$ $\displaystyle \DP{}{t} ( \rho v_i^2 )
+ \DP{}{x_j} ( \rho v_j v_i^2 )
- \rho \D...
...frac{1}{2} v_i^2 \right)
- \rho v_j \DP{}{x_j} \left( \frac{1}{2} v_i^2 \right)$  
  $\textstyle =$ $\displaystyle \DP{}{t} ( \rho v_i^2 )
+ \DP{}{x_j} ( \rho v_j v_i^2 )
- \DP{}{t...
...1}{2} \rho v_i^2 \right)
- \DP{}{x_j} \left( \frac{1}{2} v_i^2 \rho v_j \right)$  
    $\displaystyle + \frac{1}{2} v_i^2 \DP{\rho}{t}
+ \frac{1}{2} v_i^2 \DP{}{x_j} ( \rho v_j )$  
  $\textstyle =$ $\displaystyle \DP{}{t} \left( \frac{1}{2} \rho v_i^2 \right)
+ \DP{}{x_j} ( \fr...
...2 )
+ \frac{1}{2} v_i^2
\left\{ \DP{\rho}{t} + \DP{}{x_j} ( \rho v_j ) \right\}$  
  $\textstyle =$ $\displaystyle \DP{}{t} \left( \frac{1}{2} \rho v_i^2 \right)
+ \DP{}{x_j} ( \frac{1}{2} \rho v_j v_i^2 ).$  

$B$^$?(B, $B:8JUBh(B4$B9`$O
$\displaystyle v_i \rho \DP{\Phi^*}{x_i}$ $\textstyle =$ $\displaystyle \Phi^* \left\{ \DP{\rho}{t} + \DP{}{x_i}(\rho v_i) \right\}
+ \rho \DP{\Phi^*}{t}
+ v_i \rho \DP{\Phi^*}{x_i}$  
  $\textstyle =$ $\displaystyle \DP{}{t} ( \rho \Phi^* )
+ \DP{}{x_i} ( \rho \Phi^* v_i ).$  

... $B$G6a;w$9$k$H(B11
$B$3$N6a;w$K$O5?Ld$,;D$k(B. $B>uBVJ}Dx<0$K$*$$$F$O(B, $B5$BNDj?t(B $R$ $B$r(B $R^d$ $B$H(B $B$9$k6a;w$O(B($B2>29EY(B $T_v$ $B$rF3F~$9$k$3$H$G(B)$B9T$J$o$J$+$C$?(B. $c_p$ $B$K$D$$(B $B$F$@$16a;w$9$k$N$O6a;w$N%l%Y%k$K0l4S@-$,$J$$$h$&$K;W$o$l$k(B.
... $B$,@.$j$?$D(B.12
$B$3$l$O<+L@$N$3$H$H$7$?$$(B. $B%9%+%i!<(B $\psi$ $B$N:BI8JQ49$O:BI8JQ49%F%s%=%k(B $B$K0MB8$7$J$$(B($B$GF1$8CM$r$H$k(B)$B$+$i$G$"$k(B. $B$J$*(B, Pedlosky (1987) $B$G$O(B, $B%Y(B $B%/%H%k$NJQ498x<0$r;H$C$F%9%+%i!<$NJQ49$r>ZL@$7$F$$$k(B. $B$H$3$m$,%Y%/%H%k(B $B$NJQ498x<0$G$O%9%+%i!<$NJQ498x<0$r;H$C$F$$$k$N$G(B, $B2?$,$J$s$@$+$o$+$i$J(B $B$$(B.

$B0lJ}(B, $B%Y%/%H%k$N:BI8JQ49$O(B, $B:BI8JQ49%F%s%=%k$H$N@Q$GI=8=$5$l$k(B. $B$7$?$,$C(B $B$F(B, $B:BI8JQ49%F%s%=%k<+BN$,;~4VJQ2=$9$k>l9g(B, $BEvA3%Y%/%H%k$N;~4VHyJ,$O:B(B $BI8JQ49%F%s%=%k$N;~4VHyJ,$N1F6A$r

... $B$3$l$i$N<0$O7A$rJQ$($J$$(B.13
$B$3$3$G;d$,5$$K$J$C$F$$$k$N$O(B, $B1?F0%(%M%k%.!7O$X(B $B$N0\9T$K$h$C$F7A$rJQ$($k$3$H$G$"$k(B.
... $BF0%(%M%k%.!<$N;~4VJQ2=$K4sM?$7$J$$$3$H$,$o$+$k(B.14
$B1s?4NO$r=ENO2CB.EY$+$iJ,N%$7$F%(%M%k%.!<$N<0$G9MN8$9$k$H(B, $B$3$N4sM?$O%-%c(B $B%s%;%k$9$k$3$H$J$/;D$k(B.
... $B$KJQ49$9$k(B.15
$u, v$ $B$N$^$^$G$b12EY$dH/;6$K$9$l$P6K$G$NFC0[@-$r2sHr$G$-$k(B $B$N$G$O$J$$$+(B?
...$BO"B3$N<0(B 16
$BH/;6$O$9$Y$F(B $D$ $B$rMQ$$$FI=8=$9$Y$-$@$m$&(B.
... $B1?F0J}Dx<0(B17
(2005/4/4 $B@PEO(B) $\zeta$ $B$N<0$N1&JUBh0l9`$NId9f$O@5(B $B$7$$$+(B? $D$ $B$N<0$N1&JUBhFs9`$NId9f$O@5$7$$$+(B?

next up previous
: 10 $BCO5eDj?t(B : DCAPM3 $BBh(B1$BIt(B $B?tM}%b%G%k2=(B : 8 $B1tD>%U%#%k%?!<(B
Yasuhiro MORIKAWA $BJ?@.(B19$BG/(B6$B7n(B8$BF|(B