

"Non-linear violent disc instability with high Toomre's Q in high-redshift clumpy disc galaxies"

MNRAS, 456, 2052 (2016)

Shigeki Inoue (Kavli IPMU, U. Tokyo)

w/ Avishai Dekel, Nir Mandelker, Daniel Ceverino, Frederic Bournaud, Joel Primack

Clumpy galaxies

- Observed in the high-z universe (z > 1)
 - clump clusters / chain galaxies

- `Clumpy' galaxies are formation stages of disc galaxies.
 - `Giant clumps' (~ $10^9 M_{\odot}$ at the largest)
 - Clumpy galaxies account for ~ 30-60 % in z=1-3
 - Tadaki+14, Murata+14, Livermore+15, Guo+15, Shibuya+15

Clumpy galaxies

Clumpy fraction of galaxies

- Clumpy galaxies account for ~ 30-50 % in z=1-3
 - Tadaki+14, Livermore+15, Guo+15, Shibuya+15

Why are they clumpy?

- It has been proposed;
 - Galaxies are highly gas-rich (stream-fed) in their early formation stages.
 - Cold gas discs in the galaxies are Toomre unstable (Noguchi 1998, 1999).
 - <u>Clump formation is caused by 'Toomre instability'</u>

Inoue & Saitoh (2012)

Toomre instability

• From a local and linear perturbation theory for axisymmetric perturbations,

Toomre instability

- From a local and linear perturbation theory for axisymmetric perturbations
- But, actually
 - Global effect may work for instability.
- Perturbations may grow **non-linearly**.
- Perturbations may be **non-axisymmetric**.

Galaxies in cosmological context may deviate from the "idealized" situation.

Toomre analysis in cosmological sims.

Cosmological simulations Ceverino et al. (2010, 2013) using ART code

• 10pc-order resolution with radiation pressure.

How to measure Q_{2comp} • <u>2-component model</u> (Romeo & Wiegert 2011)

$$Q_{gas} = \frac{\kappa_{gas}\sigma_{gas}}{\pi G \Sigma_{gas}}, \quad Q_{star} = \frac{\kappa_{star}\sigma_{star}}{3.36G \Sigma_{star}}$$

$$\begin{cases} Q_{2comp}^{-1} = W Q_{gas}^{-1} + Q_{star}^{-1} & (if \ Q_{gas} > Q_{star}) \\ Q_{2comp}^{-1} = Q_{gas}^{-1} + W Q_{star}^{-1} & (if \ Q_{gas} < Q_{star}) \\ W \equiv \frac{\sigma_{gas}\sigma_{star}}{\sigma_{gas}^{2} + \sigma_{star}^{2}} \end{cases}$$

- σ is velocity dispersion (not sound speed).
- κ is calculated from mean velocity fields of gas/star.

$$\kappa \equiv \sqrt{2\frac{\langle v_{\phi} \rangle}{R} \left(\frac{d\langle v_{\phi} \rangle}{dR} + \frac{\langle v_{\phi} \rangle}{R}\right)}$$

- Young stars (age<100 Myr) are considered to be "gas "
- Bulge stars are removed ; $j_z/j_{max} < 0.7$
- Gaussian smoothing with FWHM=1.2 kpc
 - to focus on $M_{clump} = 10^{8-9} \,\mathrm{M}_{\odot}$
- A razor-thin disc model (which gives lower limits)

Cosmological simulations

Purple Q<1: linear instability</th>Blue Q=1-1.8: non-linear instabilityGreen Q=1.8-3: dissipative instabilityYellow, Red, Black: Q>3: stable stateWhite: imaginary κ (Q cannot be defined)

- Instability (Q<1) can only be seen in/around the clumps.
- Disc (inter-clump) regions seem to be stable (Q>2).

Purple Q<1: linear instability</th>Blue Q=1-1.8: non-linear instabilityGreen Q=1.8-3: dissipative instabilityYellow, Red, Black: Q>3: stable stateWhite: imaginary κ (Q cannot be defined)

Cosmological simulations

- Instability (Q<1) can only be seen in/around the clumps.
- Disc (inter-clump) regions seem to be stable (Q>2).

Purple Q<1: linear instability</th>Blue Q=1-1.8: non-linear instabilityGreen Q=1.8-3: dissipative instabilityYellow, Red, Black: Q>3: stable stateWhite: imaginary κ (Q cannot be defined)

Cosmological simulations

• V13 • z = 1.78• $M_{vir} = 3.4 \times 10^{11} M_{\odot}$ • $M_{star} = 1.2 \times 10^{10} M_{\odot}$ • $f_{gas} = 0.40$ • B/T = 0.46 (kinematic) • $SFR = 11.2 M_{\odot} \text{ yr}^{-1}$

- Instability (Q<1) can only be seen in/around the clumps.
- Disc (inter-clump) regions seem to be stable (Q>2).

Purple Q<1: linear instability
 Blue Q=1-1.8: non-linear instability
 Green Q=1.8-3: dissipative instability
 Yellow, Red, Black: Q>3: stable state
 White: imaginary κ (Q cannot be defined)

V07 a=0.2872

V07 a=0.2892

• Distributions of Q on proto-clumps.

• The initial masses $M_{clump} > 10^8 M_{\odot}$

Clump detection scheme (Mandelker+ 2014)

We trace clumps back in time and space, and then we look into proto-clumps which are detected for the first time.

• Distributions of Q on proto-clumps.

Significant fractions of clumps start forming with Q>1.8

- <u>Non-perturbative scenarios</u>
 - •Gas dissipation
 - $Q_{crit} = 2 3$ if gas cooling is rapid. (Elmegreen 2011)

- <u>Non-perturbative scenarios</u>
 - •Gas dissipation
 - $Q_{crit} = 2 3$ if gas cooling is rapid. (Elmegreen 2011)
 - Small-scale formation and growth following
 - Q can be <1 on small scale (e.g. Romeo et al 2010)
 - Q-measurement can depend on physical scales, e.g. Larson low
 - We applied the Gaussian smoothing with FWHM=1.2 kpc

A giant clump may form by mergers of small clumps. (Behrendt et al. 2015)

(a) Gas surface density

(b) Zoom onto cluster A

- <u>Non-perturbative scenarios</u>
- •Gas dissipation
 - $Q_{crit} = 2 3$ if gas cooling is rapid. (Elmegreen 2011)
- Small-scale formation and growth following
 - Q can be <1 on small scale (e.g. Romeo et al 2010)
- Non-axisymmetric perturbation
 - Rossby wave instability (Lovelace & Hohlfeld 1978)
 - A ring structure can break up into clumps
 - $m \neq 0$ perturbations (Griv & Gedalin 2012)
 - unstable up to $Q \cong 2$.

- <u>Perturbative scenarios</u>
- Minor mergers
 - Satellite accretion can disturb a disc.
- Pre-existing clumps
 - Clumps also disturb a disc and stimulate formation of other clumps.

- <u>Perturbative scenarios</u>
- Minor mergers
 - Satellite accretion can disturb a disc.
- Pre-existing clumps
 - Clumps also disturb a disc and stimulate formation of other clumps.
- Cold stream flowing in a disc
 - Streams can join a disc with slow or counter rotation.
 - -Slow rotation leads to low κ

- <u>Perturbative scenarios</u>
- Minor mergers
 - Satellite accretion can disturb a disc.
- Pre-existing clumps
 - Clumps also disturb a disc and stimulate formation of other clumps.
- Cold stream flowing in a disc
 - Streams can join a disc with slow or counter rotation.
- Compressive turbulence
 - -Compressing gas can indicate a high σ (i.e. high Q)
 - But a clump will form there

Summary

- We utilized the cosmological simulations and performed the Toomre analysis for high-z disc galaxies.
- Focusing on massive clumps of $M_{clump}\cong 10^{8-9}~{\rm M}_{\odot}\,{\rm on}\sim 1 {\rm kpc}$ scale.
- Q>2-3 in disc (inter-clump) regions,
- Q<1 inside/around giant clumps.
- Formation of new clumps can start with Q>2-3.

• Clump formation is NOT NECESSARILY due to the (standard) Toomre instability.

Maybe induced by other mechanisms.
minor mergers, pre-existing clumps, cold streams, etc..

最近知りたいこと

・遠方円盤銀河のクランプは、

- 必ずしもトゥームレ不安定のせいというわけではなさそう。
- では、どういう物理でクランプを作るのか?
- なぜ力学不安定性の結果が違うのか?
 近傍の円盤では 渦状腕
 遠方銀河では クランプ
- しかし、両方ともトゥームレ不安定の結果とされている。
 同じ不安定性ならば、なぜ結果がちがっているのか?

